1887

Abstract

Summary

The secondary structure of encephalomyocarditis (EMC) virus RNA has been studied and in free solution by absorbance-temperature relationships and by circular dichroism (CD). Extracted EMC virus RNA melts reversibly and has a hypochromicity of about 20%; analysis of CD spectra and formaldehyde treatment suggests that approx. 60% of the nucleotides are involved in base-pairing at 25 °C. It is shown that the RNA within the virus particle is less structured than when it exists in free solution, being partially stabilized by capsid protein against melting until the virion is disrupted to release the intact RNA. Upon clarification to remove denatured capsid protein, the released RNA gives a melting profile identical with that of phenol-extracted virus RNA. The results suggest that the intact structure of the virus is dependent upon intimate non-covalent bonds between RNA and protein together with hydrophobic bonds between the protein subunits.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-37-2-311
1977-11-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/37/2/JV0370020311.html?itemId=/content/journal/jgv/10.1099/0022-1317-37-2-311&mimeType=html&fmt=ahah

References

  1. Bachrach H. L. 1964; Foot-and-mouth disease virus: structure and mechanism of degradation as deduced from absorbance temperature measurements. Journal of Molecular Biology 8:348–358
    [Google Scholar]
  2. Bachrach H. L. 1965; Foot-and-mouth disease virus structural changes during reaction with cations and formaldehyde as deduced from absorbance measurements. Virology 25:540–552
    [Google Scholar]
  3. Beaven G. H., Holiday E. R. 1952; Ultraviolet absorption spectra of proteins and amino acids. Advances in Protein Chemistry 7:319–386
    [Google Scholar]
  4. Black D. R., Connell C. J., Merigan T. C. 1973; Structure and infectivity of picomaviral RNA encapsidated by cowpea chlorotic mottle virus protein. Journal of Virology 12:1209–1215
    [Google Scholar]
  5. Boedtker H. 1967; The reaction of ribonucleic acid with formaldehyde. I. Optical absorbance studies. Biochemistry 6:2718–2727
    [Google Scholar]
  6. Bonhoeffer F., Schachman H. K. 1960; Studies on the organization of nucleic acids within nucleoproteins. Biochemical and Biophysical Research Communications 5:366–371
    [Google Scholar]
  7. Burness A. T. H. 1969; Purification of encephalomyocarditis virus. Journal of General Virology 5:291–303
    [Google Scholar]
  8. Burness A. T. H. 1970; Ribonucleic acid content of encephalomyocarditis virus. Journal of General Virology 6:373–380
    [Google Scholar]
  9. Cotter R. I., Gratzer W. B. 1969; An infrared study of the conformation of RNA and protein in the ribosome. European Journal of Biochemistry 8:352–356
    [Google Scholar]
  10. Crick F. H. C., Watson J. D. 1956; Structure of small viruses. Nature, London 177:473–475
    [Google Scholar]
  11. Crick F. H. C., Watson J. D. 1957; Virus structure, general principles. In Ciba Foundation: Symposium on the Nature of Viruses pp 5–13
    [Google Scholar]
  12. Dunker A. K., Rueckert R. R. 1971; Fragments generated by pH dissociation of ME virus and their relation to the structure of the virion. Journal of Molecular Biology 58:217–235
    [Google Scholar]
  13. Fasman G. D., Lindblow C., Grossman L. 1964; The helical conformations of polycytidylic acid: studies on the forces involved. Biochemistry 3:1015–1021
    [Google Scholar]
  14. Fasman G. D., Lindblow C., Seaman E. 1965; Optical rotatory dispersion studies on the conformational stabilisation forces of yeast soluble ribonucleic acid. Journal of Molecular Biology 12:630–640
    [Google Scholar]
  15. Finch J. T., Klug A. 1959; Structure of poliomyelitis virus. Nature, London 183:1709–1714
    [Google Scholar]
  16. Finch J. T., Klug A. 1966; Arrangement of protein subunits and the distribution of nucleic acid in turnip yellow mosaic virus. II. Electron microscopic studies. Journal of Molecular Biology 15:344–364
    [Google Scholar]
  17. Frisby D. P. 1974 Ph.D. Thesis University of London; London, England:
  18. Frisby D. P., Newton C., Carey N. H., Fellner P., Newman J. F. E., Harris T. J. R., Brown F. 1976a; Oligonucleotide mapping of picomavirus RNAs by two-dimensional electrophoresis. Virology 71:379–388
    [Google Scholar]
  19. Frisby D. P., Smith J. C., Jeffers V., Porter A. G. 1976b; Size and location of poly(A) in encephalomyocarditis virus RNA. Nucleic Acids Research 3:2789–2810
    [Google Scholar]
  20. Goldstein R. N., Stefanovic S., Kallenbach N. R. 1972; On the conformation of transfer RNA in solution: dependence of denaturation temperature and structural parameters of mixed and formyl-methionyl Escherichia coli transfer RNA on sodium ion concentration. Journal of Molecular Biology 69:217–236
    [Google Scholar]
  21. Gould H. J., Simpkins H. 1969; Studies on the secondary structure of ribosomal ribonucleic acid components of rabbit reticulocytes. Biopolymers 7:223–239
    [Google Scholar]
  22. Gratzer W. B., Cowburn D. A. 1969; Optical activity of biopolymers. Nature, London 222:426–431
    [Google Scholar]
  23. Gratzer W. B., Richards E. G. 1971; Evaluation of RNA conformation from circular dichroism and optical rotatory dispersion data. Biopolymers 10:2607–2614
    [Google Scholar]
  24. Hall L. 1971 Ph.D. Thesis University of Wisconsin; Madison, Wisconsin, U.S.A:
  25. Henderson A. R. 1969; A constant volume device for preparing isokinetic sucrose gradients. Analytical Biochemistry 27:315–318
    [Google Scholar]
  26. Holder J. W., Lingrel J. B. 1975; Determination of secondary structure in rabbit globin mRNA by thermal denaturation. Biochemistry 14:4209–4215
    [Google Scholar]
  27. Kaper J. M., Geelen J. L. M. C. 1971; Studies on the stabilizing forces of simple RNA viruses. II. Stability, dissociation and reassembly of cucumber mosaic virus. Journal of Molecular Biology 56:277–294
    [Google Scholar]
  28. Kaper J. M., Halperin J. E. 1965; Alkaline degradation of turnip yellow mosaic virus. II. In situ breakage of the ribonucleic acid. Biochemistry 4:2434–2441
    [Google Scholar]
  29. Klug A., Longley W., Leberman R. 1966; Arrangement of protein subunits and the distribution of nucleic acid in turnip yellow mosaic virus. I. X-ray diffraction studies. Journal of Molecular Biology 15:315–343
    [Google Scholar]
  30. Kotin L. 1963; On the effect of ionic strength on the melting temperature of DNA. Journal of Molecular Biology 7:309–311
    [Google Scholar]
  31. Mcgregor S., Hall L., Rueckert R. R. 1975; Evidence for the existence of protomers in the assembly of encephalomyocarditis virus. Journal of Virology 15:1107–1120
    [Google Scholar]
  32. Mak T. W., O’callaghan D. J., Kay C. M., Colter J. S. 1971; Studies of the protein subunit of pH-inactivated Mengovirus variants. II. Physicochemical properties. Virology 43:579–587
    [Google Scholar]
  33. Mak T. W., Colter J. S., Scraba D. G. 1974; Structure of the Mengo-virion. II. Physicochemical and electron microscopic analysis of degraded virus. Virology 57:543–553
    [Google Scholar]
  34. Marushige K., Bonner J. 1966; Template properties of liver chromatin. Journal of Molecular Biology 15:160–174
    [Google Scholar]
  35. Min Jou W., Haegeman G., Ysebaert M., Fiers W. 1972; Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein. Nature, London 237:82–88
    [Google Scholar]
  36. Noll H. 1967; Characterisation of macromolecules by constant velocity sedimentation. Nature, London 215:360–363
    [Google Scholar]
  37. Porter A. G., Carey N. H., Fellner P. 1974; Presence of a large poly(rC) tract within the RNA of encephalomyocarditis virus. Nature, London 248:675–678
    [Google Scholar]
  38. Richards E. G. 1968; On the analysis of melting curves of stacked polynucleotides. European Journal of Biochemistry 6:88–92
    [Google Scholar]
  39. Rueckert R. R. 1971 In Comparative Virology Chapter 8 p 255–306 Edited by Maramorosch K., Kurstak E. New York: Academic Press;
    [Google Scholar]
  40. Schildkraut C., Lifson S. 1965; Dependence of the melting temperature of DNA on salt concentration. Biopolymers 3:195–208
    [Google Scholar]
  41. Scraba D. G., Hostvedt P., Colter J. S. 1970; Physical and chemical studies of mengovirus variants. III. Absorbance-temperature profiles, sedimentation in dextran sulphate gradients and total infectious particle ratios. Canadian Journal of Biochemistry 48:412–417
    [Google Scholar]
  42. Staynov D. Z., Pinder J. C., Gratzer W. B. 1972; Molecular weight determination of nucleic acids by gel electrophoresis in non-aqueous solution. Nature New Biology 235:108–110
    [Google Scholar]
  43. Tsuboi M., Matsuo K., Ts’o P. O. P. 1966; Interaction of poly-L-lysine and nucleic acids. Journal of Molecular Biology 15:256–267
    [Google Scholar]
  44. Van N. T., Holder J. W., Woo S. L. C., Means A. R., O’malley B. W. 1976; Secondary structure of ovalbumin messenger RNA. Biochemistry 15:2054–2062
    [Google Scholar]
  45. Vanden Berghe D., Boeye A. 1973; In situ fragmentation of RNA in poliovirus. Archiv fur die Gesamte Virusforschung 40:215–221
    [Google Scholar]
  46. Yang J. T., Samejima T. 1969; Optical rotatory dispersion and circular dichroism of nucleic acids. Progress in Nucleic Acids Research and Molecular Biology 9:223–300
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-37-2-311
Loading
/content/journal/jgv/10.1099/0022-1317-37-2-311
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error