1887

Abstract

SUMMARY

The nucleotide sequence of 4 kilobases of from within the short region of the genome of herpes simplex virus type 1 has been determined. This portion of contains the junctions of the terminal and intel inverted repeat sequence components with the unique sequence component and the 5' regions of the genes which encode the Vmw 12, Vmw 68 and Vmw 175 immediate-early polypeptides. The transcription and translation initiation sites of all three genes and the 5' and 3' boundaries of the Vmw 12 and Vmw 68 gene introns have been localized on the sequence and shown to be flanked by sequences which resemble those found in similar positions in other eukaryotic genes. For the Vmw 12 and Vmw 68 genes the promoters, the 5'-non-coding regions of the ms, and the introns lie within the terminal and intel inverted repeats respectively while the polypeptide-coding regions lie in the short unique component. The introns consist largely of tandemly reiterated copies of a 22-nucleotide sequence: the Vmw 12 gene intron contains seven of these and the Vmw 68 gene intron five. The Vmw 175 gene is located entirely within the short repeats, of which those regions sequenced here have the extremely high G + C content of 78%, in marked contrast to the value of 66% obtained for the adjacent region of the unique sequence component. Prediction of the complete amino acid sequence of the Vmw 12 polypeptide, accounting for a mol. wt. of 9830, and of the first 523 amino-terminal amino acids of the Vmw 175 polypeptide has been made from the sequence. The polypeptide-coding region of the Vmw 175 gene has an average G + C content of 80% but nevertheless specifies a wide range of amino acid types because of the maximal assignment of G and C residues to codon third base positions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-62-1-1
1982-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/62/1/JV0620010001.html?itemId=/content/journal/jgv/10.1099/0022-1317-62-1-1&mimeType=html&fmt=ahah

References

  1. Anderson K. P., Costa R. H., Holland L. E., Wagner E. K. 1980; Characterisation of herpes simplex virus type 1 RNA present in the absence of de novo protein synthesis. Journal of Virology 34:9–27
    [Google Scholar]
  2. Becker Y., Dym H., Sarov I. 1968; Herpes simplex virus DNA. Virology 36:184–192
    [Google Scholar]
  3. Benoist C., o’hare K., Breathnach R., Chambon P. 1980; The ovalbumin gene-sequence of putative control regions. Nucleic Acids Research 8:127–142
    [Google Scholar]
  4. Berk A. J., Sharp P. A. 1978; Spliced early mRNA’s of SV40. Proceedings of the National Academy of Sciences of the United States of America 75:1274–1278
    [Google Scholar]
  5. Busslinger M., Portmann R., Irminger J. C., Birnstiel M. L. 1980; Ubiquitous and gene-specific regulatory 5' sequences in a sea urchin histone DNA clone coding for histone protein variants. Nucleic Acids Research 8:957–978
    [Google Scholar]
  6. Clements J. B., Watson R. J., Wilkie N. M. 1977; Temporal regulation of herpes simplex virus type 1 transcription : location of transcripts on the viral genome. Cell 12:275–285
    [Google Scholar]
  7. Clements J. B., Mclauchlan J., Mcgeoch D. J. 1979; Orientation of herpes simplex virus type 1 immediate early mRNAs. Nucleic Acids Research 7:77–92
    [Google Scholar]
  8. Clewell D. B. 1972; Nature of Col E1 plasmid replication in Escherichia coli in the presence of chloramphenicol. Journal of Bacteriology 110:667–676
    [Google Scholar]
  9. Davison A. J., Wilkie N. M. 1981; sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. Journal of General Virology 55:315–331
    [Google Scholar]
  10. Delius H., Clements J. B. 1976; A partial denaturation map of herpes simplex virus type 1 DNA: evidence for inversions of the unique DNA regions. Journal of General Virology 33:125–133
    [Google Scholar]
  11. Dixon R. A. F., Schaffer P. A. 1980; Fine-structure mapping and functional analysis of temperature sensitive mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein VP 175. Journal of Virology 36:189–203
    [Google Scholar]
  12. Fitzgerald M., Shenk T. 1981; The sequence 5'AAUAAA-3' forms part of the recognition site for polyadenylation of late SV40 mRNA’s. Cell 24:251–260
    [Google Scholar]
  13. Frenkel N., Silverstein S., Cassai E., Roizman B. 1973; RNA synthesis in cells infected with herpes simplex virus. VII. Control of transcription and of transcript abundancies of unique and common sequences of herpes simplex virus 1 and 2. Journal of Virology 11:886–892
    [Google Scholar]
  14. Gannon F., O’Hare K., Perrin F., Lepennec J. P., Benoist C., Cochet M., Breathnach R., Royal A., Garapin A., Cami B., Chambon P. 1979; Organisation and sequences at the 5' end of a cloned complete ovalbumin gene. Nature, London 278:428–434
    [Google Scholar]
  15. Graham B. J., Ludwig H., Bronson D. L., Benyesh-Melnick M., Biswal N. 1972; Physicochemical properties of the DNA of herpes viruses. Biochimica et biophysica acta 259:13–23
    [Google Scholar]
  16. Halliburton I. W. 1972 Biological comparisons of type 1 and type 2 herpes simplex viruses. In Oncogenesis and Herpesviruses pp. 432–438 Edited by Biggs P. M., de Thé G., Payne L. N. Lyon: IARC Scientific Publications, no. 2;
    [Google Scholar]
  17. Holland L. E., Anderson K. P., Shipman C. Jr, Wagner E. K. 1980; Viral DNA synthesis is required for the efficient expression of specific herpes simplex virus type 1 mRNA species. Virology 101:10–24
    [Google Scholar]
  18. Honess R. W., Roizman B. 1973; Proteins specified by herpes simplex virus. XI. Identification and relative molar rates of synthesis of structural and nonstructural herpes virus polypeptides in the infected cell. Journal of Virology 12:1347–1365
    [Google Scholar]
  19. Honess R. W., Roizman B. 1974; Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. Journal of Virology 14:8–19
    [Google Scholar]
  20. Jones P. C., Roizman B. 1979; Regulation of herpesvirus macromolecular synthesis. VIII. The transcription program consists of three phases during which both extent of transcription and accumulation of RNA in the cytoplasm are regulated. Journal of Virology 31:299–314
    [Google Scholar]
  21. Katz L., Kingsbury D. T., Helinski D. R. 1973; Stimulation by cyclic adenosine monophosphate of plasmid deoxyribonucleic acid replication and catabolite repression of the plasmid deoxyribonucleic acid-protein relaxation complex. Journal of Bacteriology 114:577–591
    [Google Scholar]
  22. Kieff E. D., Bachenheimer S. L., Roizman B. 1971; Size, composition and structure of the deoxyribonucleic acid of herpes simplex virus subtypes 1 and 2. Journal of Virology 8:125–132
    [Google Scholar]
  23. Kozak M. 1981; Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Research 9:5233–5252
    [Google Scholar]
  24. Lonsdale D. M., Brown S. M., Lang J., Subak-Sharpe J. H., Koprowski H., Warren K. G. 1980; Variations in herpes simplex virus isolated from human ganglia and a study of clonal variation in HSV-1. Annals of the New York Academy of Sciences 354:291–308
    [Google Scholar]
  25. Mackem S., Roizman B. 1980; Regulation of herpesvirus macromolecular synthesis: transcription-initiation sites and domains of α genes. Proceedings of the National Academy of Sciences of the United States of America 77:7122–7126
    [Google Scholar]
  26. Marsden H. S., Crombie I. K., Subak Sharpe J. H. 1976; Control of protein synthesis in herpesvirus-infected cells: analysis of the polypeptides induced by wild type and sixteen temperature-sensitive mutants of HSV strain 17. Journal of General Virology 31:347–372
    [Google Scholar]
  27. Maxam A. M., Gilbert W. 1977; A new method for sequencing DNA. Proceedings of the National Academy of Sciences of the United States of America 74:560–564
    [Google Scholar]
  28. Maxam A. M., Gilbert W. 1980; Sequencing end-labelled DNA with base-specific chemical cleavages. Methods in Enzymology 65:499–560
    [Google Scholar]
  29. Morse L. S., Pereira L., Roizman B., Schaffer P. A. 1978; Anatomy of herpes simplex virus (HSV) DNA. X. Mapping of viral genes by analysis of polypeptides and functions specified by HSV-1 x HSV-2 recombinants. Journal of Virology 26:389–410
    [Google Scholar]
  30. Ohmori H., Tomizawa J., Maxam A. M. 1978; Detection of 5-methylcytosine in DNA sequences. Nucleic Acids Research 5:1479–1485
    [Google Scholar]
  31. Parris D. S., Courtney R. J., Schaffer P. A. 1978; Temperature-sensitive mutants of herpes simplex virus type 1 defective in transcriptional and post-transcriptional functions required for viral DNA synthesis. Virology 90:177–186
    [Google Scholar]
  32. Piatak M., Subramanian K. N., Roy P., Weissman S. M. 1981; Late messenger RNA production by viable simian virus 40 mutants with deletions in the leader region. Journal of Molecular Biology 153:589–618
    [Google Scholar]
  33. Post L. E., Roizman B. 1981; A generalised technique for deletion of specific genes in large genomes: a gene 22 of herpes simplex virus 1 is not essential for growth. Cell 25:227–232
    [Google Scholar]
  34. Preston C. M. 1979a; Control of herpes simplex virus type 1 mRNA synthesis in cells infected with wild-type virus or the temperature-sensitive mutant ts K. Journal of Virology 29:275–284
    [Google Scholar]
  35. Preston C. M. 1979b; Abnormal properties of an immediate-early polypeptide in cells infected with the herpes simplex virus type 1 mutant ts K. Journal of Virology 32:357–369
    [Google Scholar]
  36. Preston V. G., Davison A. J., Marsden H. S., Timbury M. C., Subak-Sharpe J. H., Wilkie N. M. 1978; Recombinants between herpes simplex virus types 1 and 2: analysis of genome structures and expression of immediate-early polypeptides. Journal of Virology 28:499–517
    [Google Scholar]
  37. Reddy V. B., Thimmappaya B., Dhar R., Subramanian K. N., Zain B. S., Pan J., Ghosh P. K., Celma M. L., &Weissman S. M. 1978; The genome of simian virus 40. Science 200:494–502
    [Google Scholar]
  38. Rixon F. J., Clements J. B. 1982; Detailed structural analysis of two spliced HSV-1 immediate-early mRNA’s. Nucleic Acids Research 10: (in press)
    [Google Scholar]
  39. Roberts R. J. 1980; Restriction and modification enzymes and their recognition sequences. Nucleic Acids Research 8:r63–r80
    [Google Scholar]
  40. Schlagman S., Hattman S., May M. S., Berger L. 1976; In vivo methylation by Escherichia coli K-12 mec+ deoxyribonucleic acid-cytosine methylase protects against in vitro cleavage by the RII restriction endonuclease (R. EcoRII). Journal of Bacteriology 126:990–996
    [Google Scholar]
  41. Seif I., Khoury G., Dhar R. 1979; BKV splice sequences based on analysis of preferred donor and acceptor sites. Nucleic Acids Research 6:3387–3398
    [Google Scholar]
  42. Sheldrick P., Berthelot N. 1974; Inverted repetitions in the chromosome of herpes simplex virus. Cold Spring Harbor Symposia on Quantitative Biology 39:667–678
    [Google Scholar]
  43. Smith H. O., Birnstiel M. L. 1976; A simple method for DNA restriction site mapping. Nucleic Acids Research 3:2387–2398
    [Google Scholar]
  44. Staden R. 1977; Sequence data handling by computer. Nucleic Acids Research 4:4037–4051
    [Google Scholar]
  45. Staden R. 1978; Further procedures for sequence analysis by computer. Nucleic Acids Research 5:1013–1015
    [Google Scholar]
  46. Twigg A. J., Sherratt D. J. 1980; Trans-complementable copy-number mutants of plasmid Col E1. Nature, London 283:216–218
    [Google Scholar]
  47. Wadsworth S., Jacob R. J., Roizman B. 1975; Anatomy of herpes simplex virus DNA. II. Size, composition, and arrangement of inverted terminal repetitions. Journal of Virology 15:1487–1497
    [Google Scholar]
  48. Wagner E. K., Swanstrom R. I., Stafford M. 1972; Transcription of the herpes simplex virus genome in human cells. Journal of Virology 4:675–682
    [Google Scholar]
  49. Watson R. J., Clements J. B. 1978; Characterisation of transcription-deficient temperature-sensitive mutants of herpes simplex virus type 1. Virology 91:364–379
    [Google Scholar]
  50. Watson R. J., Clements J. B. 1980; A herpes simplex virus type 1 function continuously required for early and late virus RNA synthesis. Nature, London 285:329–330
    [Google Scholar]
  51. Watson R. J., Preston C. M., Clements J. B. 1979; Separation and characterisation of herpes simplex virus type 1 immediate-early mRNA’s. Journal of Virology 31:42–52
    [Google Scholar]
  52. Watson R. J., Sullivan M., Vande Woude G. F. 1981a; Structures of two spliced herpes simplex virus type 1 immediate-early mRNA’s which map at the junctions of the unique and reiterated regions of the virus DNA S component. Journal of Virology 37:431–444
    [Google Scholar]
  53. Watson R. J., Umene K., Enquist L. W. 1981b; Reiterated sequences within the intron of an immediate-early gene of herpes simplex virus type 1. Nucleic Acids Research 9:4189–4199
    [Google Scholar]
  54. Wilkie N. M. 1976; Physical maps for herpes simplex virus type 1 DNA for restriction endonucleases Hindlll, Hpa-I and X.bad. Journal of Virology 20:222–233
    [Google Scholar]
  55. WilkiE N. M., Cortini R. 1976; Sequence arrangement in herpes simplex virus type 1 DNA: identification of terminal fragments in restriction endonuclease digests and evidence for inversions in redundant and unique sequences. Journal of Virology 20:211–221
    [Google Scholar]
  56. Wilkie N. M., Davison A., Chartrand P., Stow N. D., Preston V. G., Timbury M. C. 1978; Recombination in herpes simplex virus: mapping of mutations and analysis of intertypic recombinants. Cold Spring Harbor Symposia on Quantitative Biology 43:827–840
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-62-1-1
Loading
/content/journal/jgv/10.1099/0022-1317-62-1-1
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error