1887

Abstract

SUMMARY

The 5′ ends of two early herpes simplex virus type 1 mRNAs have been identified by nuclease S1 and exonuclease VII analysis using cloned virus DNA probes. These mRNAs (5.0 kb and 1.2 kb), located within the genome region between map coordinates 0.56 and 0.60, are unspliced and share a 3′ terminus. Genomic DNA at the 5′ ends has been sequenced and the 5′ termini have been located on the virus DNA sequence. The DNA sequence has revealed signals involved in the initiation of transcription of both mRNAs, and the 5′ end of the 1.2 kb mRNA is encoded within the internal sequences of the 5.0 kb mRNA. The probable translational initiation codons for the polypeptides specified by these mRNAs have been identified, and the results indicate that the coding regions of the two mRNAs do not overlap.

Keyword(s): DNA sequence , HSV-1 and mRNA location
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-64-5-997
1983-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/64/5/JV0640050997.html?itemId=/content/journal/jgv/10.1099/0022-1317-64-5-997&mimeType=html&fmt=ahah

References

  1. Alestrom P., Akusjarvi G., Perricaudet M., Mathews M. B., Klessig D. F., Pettersson U. 1980; The gene for polypeptide IX of adenovirus type 2 and its unspliced messenger RNA. Cell 19:671–682
    [Google Scholar]
  2. Anderson K. P., Frink R. J., Devi G. B., Gaylord B. H., Costa R. H., Wagner E. K. 1981; Detailed characterisation of the mRNA mapping in the Hind III k region of the herpes simplex virus type 1 genome. Journal of Virology 37:1011–1027
    [Google Scholar]
  3. Berk A. J., Sharp P. A. 1978; Structure of the adenovirus 2 early mRNAs. Cell 14:695–711
    [Google Scholar]
  4. Busslinger M., Portmann R., Irminger J. C., Birnstiel M. L. 1980; Ubiquitous and gene-specific regulatory 5′ sequences in a sea urchin histone DNA clone coding for histone protein variants. Nucleic Acids Research 8:957–977
    [Google Scholar]
  5. Carlson M., Botstein D. 1982; Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of invertase. Cell 28:145–154
    [Google Scholar]
  6. Chase J. W., Richardson C. C. 1974; Exonuclease VII of Escherichia coli. Journal of Biological Chemistry 249:4553–4561
    [Google Scholar]
  7. Chow L. T., Broker T. R., Lewis J. B. 1979; Complex splicing patterns of RNAs from the early regions of adenovirus-2. Journal of Molecular Biology 134:265–303
    [Google Scholar]
  8. Clements J. B., Watson R. J., Wilkie N. M. 1977; Temporal regulation of herpes simplex virus type 1 transcription: location of transcripts on the viral genome. Cell 12:275–285
    [Google Scholar]
  9. Corden J., Wasylyk B., Buchwalder A., Sassone-Corsi P., Kedinger C., Chambon P. 1980; Promoter sequences of eukaryotic protein-coding genes. Science 209:1406–1414
    [Google Scholar]
  10. Costa R. H., Devi B. G., Anderson K. P., Gaylord B. H., Wagner E. K. 1981; Characterisation of a major late herpes simplex virus type 1 mRNA. Journal of Virology 38:483–496
    [Google Scholar]
  11. Darnell J. E. 1982; Variety in the level of gene control in eukaryotic cells. Nature, London 297:365–371
    [Google Scholar]
  12. Davison A. J., Wilkie N. M. 1981; Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. Journal of General Virology 55:315–331
    [Google Scholar]
  13. Draper K. G., Frink R. J., Wagner E. W. 1982; Detailed characterisation of an apparently unspliced β herpes simplex virus type 1 gene mapping in the interior of another. Journal of Virology 43:1123–1128
    [Google Scholar]
  14. Frink R. J., Anderson K. P., Wagner E. K. 1981a; Herpes simplex virus type 1 Hind III fragment l encodes spliced and complementary mRNA species. Journal of Virology 39:559–572
    [Google Scholar]
  15. Frink R. J., Draper K. G., Wagner E. K. 1981b; Uninfected cell polymerase efficiently transcribes early but not late herpes simplex virus type 1 mRNA. Proceedings of the National Academy of Sciences, U. S. A 78:6139–6143
    [Google Scholar]
  16. Galloway D. A., Goldstein L. C., Lewis J. B. 1982; Identification of proteins encoded by a fragment of herpes simplex virus type 2 DNA that has transforming activity. Journal of Virology 42:530–537
    [Google Scholar]
  17. Kozak M. 1981; Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Research 9:5233–5252
    [Google Scholar]
  18. Kumar A., Lindberg U. 1972; Characterisation of messenger ribonucleoprotein and messenger RNA from KB cells. Proceedings of the National Academy of Sciences, U. S. A 69:681–685
    [Google Scholar]
  19. McKnight S. L. 1980; The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene. Nucleic Acids Research 8:5949–5964
    [Google Scholar]
  20. McLauchlan I., Clements J. B. 1982; A 3′ co-terminus of two early herpes simplex virus type 1 mRNAs. Nucleic Acids Research 10:501–512
    [Google Scholar]
  21. Maxam A. M., Gilbert W. 1980; Sequencing end-labelled DNA with base-specific chemical cleavages. Methods in Enzymology 65:499–560
    [Google Scholar]
  22. Reyes G. R., Lafemina R., Hayward S. D., Hayward G. S. 1979; Morphological transformation by DNA fragments of human herpesviruses: evidence for two distinct transforming regions in herpes simplex virus types 1 and 2 and lack of correlation with biochemical transfer of the thymidine kinase gene. Cold Spring Harbor Symposia on Quantitative Biology 44:629–641
    [Google Scholar]
  23. Rixon F. J., Clements J. B. 1982; Detailed structural analysis of two spliced HSV-1 immediate-early mRNAs. Nucleic Acids Research 10:2241–2256
    [Google Scholar]
  24. Stillman B. W., Lewis J. B., Chow L. T., Mathews M. B., Smart J. E. 1981; Identification of the gene and mRNA for the adenovirus terminal protein precursor. Cell 23:497–508
    [Google Scholar]
  25. Twigg A. J., Sherratt D. 1980; Trans-complementable copy-number mutants of plasmid ColEl. Nature, London 283:216–218
    [Google Scholar]
  26. Watson R. J., Sullivan M., Vande Woude G. F. 1981; Structures of two spliced herpes simplex type 1 immediate-early mRNAs which map at the junctions of the unique and reiterated regions of the virus DNA S component. Journal of Virology 37:431–444
    [Google Scholar]
  27. Weaver R. F., Weissmann C. 1979; Mapping of RNA by a modification of the Berk-Sharp procedure: the 5′ termini of 15S β-globin mRNA have identical map coordinates. Nucleic Acids Research 7:1175–1193
    [Google Scholar]
  28. Ziff E. B. 1981; Transcription and RNA processing by the DNA tumour viruses. Nature, London 287:491–499
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-64-5-997
Loading
/content/journal/jgv/10.1099/0022-1317-64-5-997
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error