1887

Abstract

Summary

Gin-mediated site-specific recombination promotes inversion of the G segment of phage Mu. The crossover takes place between two 34 bp-long inverted repeat sequences flanking the G segment. We have characterized the inversion site, the target for the site-specific recombination mechanism. An artificial invertible segment was constructed which consists of parts of the invertible segments of Mu and phage P1, which in this respect are largely homologous. Upon inversion of this hybrid segment the crossover site could be located, by DNA sequencing, in the ACCT sequence of the centre of symmetry in the inverted repeat in Mu. The hybrid Mu-P1 segment inverts at a lower frequency than its parental invertible segments probably because of the mismatches between the inverted repeats of Mu and P1. This suggests that base pairing between the inverted repeats is an intermediate step in recombination. Plasmids with subcloned G segments lacking the adjacent β region of Mu or the corresponding region in P7, a relative of P1, are deficient in inversion. By analysis through site-specific mutagenesis of Mu DNA, an enhancer element with multiple recognition sites was identified which is necessary for efficient inversion. This component of the inversion site was located in a 170 bp segment within the Mu β region, 30 bp to the right of the inverted repeat sequence, but can be separated from the crossover site by a 1200 bp insertion without losing its effect.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-67-6-1123
1986-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/67/6/JV0670061123.html?itemId=/content/journal/jgv/10.1099/0022-1317-67-6-1123&mimeType=html&fmt=ahah

References

  1. Beck E., Ludwig G., Auerswald E. A., Reiss B., Schaller H. 1982; Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19:327–336
    [Google Scholar]
  2. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523
    [Google Scholar]
  3. Cohen S. N., Chang C. Y. A., Hsu L. 1972; Nonchromosomal antibiotic resistance in bacteria; genetic transformation of Escherichia coli by R-factor DNA. Proceedings of the National Academy of Sciences, U.S.A. 69:2110–2114
    [Google Scholar]
  4. Craig N., Nash H. A. 1984; E. coli integration host factor binds to specific sites in DNA. Cell 39:707–716
    [Google Scholar]
  5. Diver W. P., Grinsted J., Fritzinger D. C., Brown N. L., Altenbuchner J., Rogowsky P., Schmitt R. 1983; DNA sequences of and complementation by the tnpR genes of Tn21, Tn501 and Tn1721. Molecular and General Genetics 191:189–193
    [Google Scholar]
  6. Gill R., Heffron F., Dougan G., Falkow S. 1978; Analysis of sequences transposed by complementation of two classes of transposition-deficient mutants of Tn3. Journal of Bacteriology 136:742–756
    [Google Scholar]
  7. Grindley N. D. F., Lauth M. R., Wells R. G., Wityk R. J., Salvo J. J., Reed R. R. 1982; Transposon-mediated site-specific recombination: identification of three binding sites for resolvase at the res sites of γδ and Tn3. Cell 30:19–27
    [Google Scholar]
  8. Grundy F. J., Howe M. M. 1984; Involvement of the invertible G segment in bacteriophage Mu tail fibre biosynthesis. Virology 134:296–317
    [Google Scholar]
  9. Howe M. M. 1973; Prophage deletion mapping of bacteriophage Mu-1. Virology 54:93–101
    [Google Scholar]
  10. Hsu M. T., Davidson N. 1974; Electron microscope heteroduplex study of the heterogeneity of Mu phage and prophage DNA. Virology 58:229–239
    [Google Scholar]
  11. Hsu P. L., Ross W., Landy A. 1980; The A phage att site: functional limits and interaction with Int protein. Nature, London 285:85–91
    [Google Scholar]
  12. Huber H. E., Iida S., Arber W., Bickle T. A. 1985; Site-specific DNA inversion is enhanced by a DNA sequence element in cis . Proceedings of the National Academy of Sciences, U.S.A. 82:3776–3780
    [Google Scholar]
  13. Hull R. A., Gill G. S., Curtiss R. III 1978; Genetic characterization of Mu-like bacteriophage D108. Journal of Virology 27:513–518
    [Google Scholar]
  14. Iida S., Arber W. 1979; Multiple physical differences in the genome structure of functionally related bacteriophages P1 and P7. Molecular and General Genetics 173:249–261
    [Google Scholar]
  15. Iida S., Meyer J., Kennedy K. E., Arber W. 1982; A site-specific, conservative recombination system carried by bacteriophage P1 Mapping the recombinase gene cin and the crossover sites cix for the inversion of the C segment. EMBO Journal 1:1445–1453
    [Google Scholar]
  16. Johnson R. C., Simon M. I. 1985; Hin-mediated site-specific recombination requires two 26 bp recombination sites and a 60 bp recombinational enhancer. Cell 41:781–791
    [Google Scholar]
  17. Kahmann R., Kamp D., Zipser D. 1976; Transfection of E. coli by Mu DNA. Molecular and General Genetics 149:323–328
    [Google Scholar]
  18. Kahmann R., Rudt F., Koch C., Mertens G. 1985; G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor. Cell 41:771–780
    [Google Scholar]
  19. Kamp D. 1981; Invertible deoxyribonucleic acid: the G segment of bacteriophage Mu. In Microbiology 1981 pp 73–76 Edited by Schlessinger D. Washington, D.C.: American Society for Microbiology;
    [Google Scholar]
  20. Kamp D., Kahmann R. 1981; The relationship of two invertible segments in bacteriophage Mu and Salmonella typhimurium DNA. Molecular and General Genetics 184:564–566
    [Google Scholar]
  21. Kamp D., Sandulache R. 1983; Recognition of cell surface receptors is controlled by invertible DNA of phage Mu. FEMS Microbiology Letters 16:131–135
    [Google Scholar]
  22. Kamp D., Kahmann R., Zipser D., Broker T. R., Chow L. T. 1978; Inversion of the G DNA segment of phage Mu controls phage infectivity. Nature, London 271:577–580
    [Google Scholar]
  23. Kamp D., Chow L. T., Broker T. R., Kwoh D., Zipser D., Kahmann R. 1979; Site-specific recombination in Mu. Cold Spring Harbor Symposia on Quantitative Biology 43:1159–1167
    [Google Scholar]
  24. Kamp D., Kardas E., Ritthaler W., Sandulache R., Schmucker R., Stern B. 1984; Comparative analysis of invertible DNA in phage genomes. Cold Spring Harbor Symposia on Quantitative Biology 49:301–311
    [Google Scholar]
  25. Kostriken R., Morita C., Heffron F. 1981; Transposon Tn3 encodes a site-specific recombination system: identification of essential sequences, genes, and actual site of recombination. Proceedings of the National Academy of Sciences, U.S.A. 78:4041–4045
    [Google Scholar]
  26. Maxam A. M., Gilbert W. 1977; A new method for sequencing DNA. Proceedings of the National Academy of Sciences, U.S.A 74:560–564
    [Google Scholar]
  27. Mertens G., Hoffmann A., Blöcker H., Frank R., Kahmann R. 1984; Gin-mediated site-specific recombination in bacteriophage Mu DNA: overproduction of the protein and inversion in vitro . EMBO Journal 3:2415–2421
    [Google Scholar]
  28. Miller J. H. 1972 Experiments in Molecular Genetics New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Mizuuchi M., Mizuuchi K. 1980; Integrative recombination of bacteriophage λ: extent of the DNA sequence involved in attachment site function. Proceedings of the National Academy of Sciences, U.S.A. 77:3220–3224
    [Google Scholar]
  30. Nash H. A. 1981; Integration and excision of bacteriophage λ the mechanism of conservative site specific recombination. Annual Review of Genetics 15:143–167
    [Google Scholar]
  31. Plasterk R. H. A., Brinkman A., Van De Putte P. 1983; DNA inversions in the chromosome of Escherichia coli DNA and in bacteriophage Mu: relationship to other site-specific recombination systems. Proceedings of the National Academy of Sciences, U.S.A. 80:5355–5358
    [Google Scholar]
  32. Plasterk R. H. A., Kanaar R., Van De Putte P. 1984; A genetic switch in vitro: DNA inversion by Gin protein of phage Mu. Proceedings of the National Academy of Sciences, U.S.A. 81:2689–2692
    [Google Scholar]
  33. Rosner J. L. 1972; Formation, induction and curing of bacteriophage P1 lysogens. Virology 48:679–689
    [Google Scholar]
  34. Rothstein S. J., Jorgensen R. A., Postle K., Reznikoff W. S. 1980; The inverted repeats of Tn5 are functionally different. Cell 19:795–805
    [Google Scholar]
  35. Simon M., Zieg J., Silverman M., Mandel G., Doolittle R. 1980; Phase variation: evolution of a controlling element. Science 209:1370–1374
    [Google Scholar]
  36. Stougaard P., Molin S. 1981; Vertical dye-buoyant density gradients for rapid analysis and preparation of plasmid DNA. Analytical Biochemistry 118:191–193
    [Google Scholar]
  37. Sugden B., De Troy B., Roberts R. J., Sambrook J. 1975; Agarose slab-gel electrophoresis equipment. Analytical Biochemistry 68:36–46
    [Google Scholar]
  38. Van De Putte P., Cramer S., Giphart-Gassler M. 1980; Invertible DNA determines host specificity of bacteriophage Mu. Nature, London 286:218–222
    [Google Scholar]
  39. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268
    [Google Scholar]
  40. Wandersman C., Yarmolinsky M. 1977; Bipartite control of immunity conferred by the related heteroimmune plasmid prophages, P1 and P7 (formerly ɸ Amp). Virology 77:386–400
    [Google Scholar]
  41. Yin S., Bushman W., Landy A. 1985; Interaction of the lambda site-specific recombination protein Xis with attachment site DNA. Proceedings of the National Academy of Sciences, U.S.A 82:1040–1044
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-67-6-1123
Loading
/content/journal/jgv/10.1099/0022-1317-67-6-1123
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error