1887

Abstract

SUMMARY

We have compared the sequences of the putative polypeptides of the human pathogenic B19 parvovirus with protein sequences in the National Bethesda Research Foundation Library, and have discovered a significant homology between a B19 parvovirus non-structural (NS) protein and the T antigens of polyomaviruses and simian virus 40 (SV40) and the putative E1 proteins of papillomaviruses. The region of highest homology with the papovavirus proteins corresponds to the region that is most highly conserved in the NS1 proteins of several other parvoviruses. Studies with the T antigen of both polyomaviruses and SV40 have implicated this region as having an ATPase activity and nucleotide-binding function.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-68-3-885
1987-03-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/68/3/JV0680030885.html?itemId=/content/journal/jgv/10.1099/0022-1317-68-3-885&mimeType=html&fmt=ahah

References

  1. Anderson W. F., Takeda Y., Ohlendorf D. H., Matthews B. W. 1982; Proposed a-helical super-secondary structure associated with protein-DNA recognition. Journal of Molecular Biology 159:745–750
    [Google Scholar]
  2. Astell C. R., Thompson M., Chow M. B., Ward D. C. 1983a; Structure and replication of minute virus of mice DNA. Cold Spring Harbor Symposia on Quantitative Biology 47:751–762
    [Google Scholar]
  3. Astell C. R., Thompson M., Merchlinsky M., Ward D. C. 1983b; The complete DNA sequence of minute virus of mice, an autonomous parvovirus. Nucleic Acids Research 11:999–1018
    [Google Scholar]
  4. Bacon D. B., Anderson W. F. 1986; Multiple sequence alignment. Journal of Molecular Biology in press
    [Google Scholar]
  5. Carlson I., Rushlow K., Maxwell I., Maxwell F., Winston S., Hahn W. 1985; Cloning and sequence of DNA encoding structural proteins of the autonomous parvovirus feline panleukopenia virus. Journal of Virology 55:574–582
    [Google Scholar]
  6. Carter B. J., Laughlin C. A., Marcus-Sekura C. J. 1984; Parvovirus transcription. In The Parvoviruses pp 153–207 Berns K. I. Edited by New York: Plenum Press;
    [Google Scholar]
  7. Chen E. Y., Howley P. M., Levinson A. D., Seeburg P. H. 1982; The primary structure and genetic organization of the bovine papillomavirus type 1 genome. Nature; London: 299529–534
    [Google Scholar]
  8. Clark R., Lane D. P., Tjian R. 1981; Use of monoclonal antibodies as probes of simian virus 40 T antigen ATPase activity. Journal of Biological Chemistry 256:11854–11858
    [Google Scholar]
  9. Clark R., Peden K., Pipas J. M., Nathans D., Tjian R. 1983; Biochemical activities of T antigen proteins encoded by simian virus 40 A gene deletion mutants. Molecular and Cellular Biology 3:220–228
    [Google Scholar]
  10. Clertant P., Seif I. 1984; A common function for polyoma virus large-T and papillomavirus El proteins. Nature; London: 311276–279
    [Google Scholar]
  11. Clertant P., Gaudray P., May E., Cuzin F. 1984; The nucleotide binding site detected by affinity labelling of the large T proteins of polyoma and SV40 viruses is distinct from their ATPase catalytic site. Journal of Biological Chemistry 259:15196–15203
    [Google Scholar]
  12. Cotmore S. F., Tattersall P. 1984; Characterization and molecular cloning of a human parvovirus genome. Science 226:1161–1165
    [Google Scholar]
  13. Cotmore S. f., Tattersall P. 1986; The NS-1 polypeptide of the autonomous parvovirus MVM is a nuclear phosphoprotein. Virus Research in press
    [Google Scholar]
  14. Cotmore S. F., Mckie V. C., Anderson L. J., Astell C. R., Tattersall P. 1986; Identification of major structural and non-structural proteins encoded by the human parvovirus B19 and mapping of their genes by prokaryotic expression of isolated genomic fragments. Journal of Virology in press
    [Google Scholar]
  15. Danos O., Engel L. W., Chen E. Y., Yanov M., Howley P. M. 1983; Comparative analysis of the human type la and bovine type 1 papillomavirus genome. Journal of Virology 46:557–566
    [Google Scholar]
  16. Delaney A. 1982; A DNA sequence handling program. Nucleic Acids Research 10:61–67
    [Google Scholar]
  17. Delmas V., Bastien C., Scherneck S., Feunteun J. 1985; A new member of the polyomavirus family: the hamster papovavirus. Complete nucleotide sequence and transformation properties. EMBO Journal 4:1279–1286
    [Google Scholar]
  18. Fiers W., Contreras R., Haegeman G., Rogier R., Van De Voorde A., Van Heuverswyn H., Van Herreweghe J., Volckaer G., Ysebaert M. 1978; Complete nucleotide sequence of SV40 DNA. Nature; London: 273113–120
    [Google Scholar]
  19. Fry D. C., Kuby S. A., Mildvan A. S. 1986; ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, FI-ATPase, and other nucleotide-binding proteins. Proceedings of the National Academy of Sciences U.S.A.: 83907–911
    [Google Scholar]
  20. Hermonat P. L., Lebow M. A., Wright R., Berns K.1., Muzyczka N. 1984; Genetics of adeno-associated virus: isolation and preliminary characterization of adeno-associated virus type 2 mutants. Journal of Virology 51:329–339
    [Google Scholar]
  21. Husain I., Van Houten B., Thomas D. C., Sancar A. 1986; Sequences of Escherichia coli uvrA gene and protein reveal two potential ATP binding sites. Journal of Biological Chemistry 261:4895–4901
    [Google Scholar]
  22. Lane D. P., Hoeffler W. K. 1980; SV40 large T shares antigenic determinants with a cellular protein of molecular weight 68,000. Nature; London: 288167–170
    [Google Scholar]
  23. Lipman D. J., Pearson W. R. 1985; Rapid and sensitive protein similarity searches. Science 227:1435–1441
    [Google Scholar]
  24. Lusky M., Botchan M. R. 1984; Characterization of the bovine papillomavirus plasmid maintenance sequences. Cell 36:391–401
    [Google Scholar]
  25. Mclachlan A. D. 1971; Tests for comparing related amino-acid sequences cytochrome c and cytochrome c551. Journal of Molecular Biology 61:409–424
    [Google Scholar]
  26. Mole S. E., Lane D. P. 1985; Use of simian virus 40 large T-β-galactosidase fusion proteins in an immunochemical analysis of simian virus 40 large antigen. Journal of Virology 54:703–710
    [Google Scholar]
  27. Pabo C. O., Sauer R. T. 1984; Protein-DNA recognition. Annual Review of Biochemistry 53:293–321
    [Google Scholar]
  28. Paradiso P. R. 1984; Identification of multiple forms of the noncapsid parvovirus protein NCVP1 in H-1 parvovirus infected cells. Journal of Virology 52:82–87
    [Google Scholar]
  29. Paucha E., Kalderon D., Harvey R. W., Smith A. E. 1986; Simian virus 40 origin DNA-binding domain on large T antigen. Journal of Virology 57:50
    [Google Scholar]
  30. Reddy V. B., Thimmappaya B., Dhar R., Subramanian K. N., Zain B. S., Pan J., Ghosh P. K., Celma M. L., Weissman S. M. 1978; The genome of simian virus 40. Science 200:494–502
    [Google Scholar]
  31. Rhode S. L. 1985a; Nucleotide sequence of the coat protein gene of canine parvovirus. Journal of Virology 54:630–633
    [Google Scholar]
  32. Rhode S.L. III 1985b; Trans-activation of parvovirus P38 promoter by the 76K noncapsid protein. Journal of Virology 55:886–889
    [Google Scholar]
  33. Rhode S. L., Paradiso P. R. 1983; Parvovirus genome: nucleotide sequence of H-l and mapping of its genes by hybrid-arrest translation. Journal of Virology 45:173–184
    [Google Scholar]
  34. Sauer R. T., Yocum R. R., Doolittle R. F., Lewis M., Pabo C. O. 1982; Homology among DNA-binding proteins suggests use of a conserved super-secondary structure. Nature; London: 298447–451
    [Google Scholar]
  35. Schwartz E., Durst M., Demankowski C., Lattermann O., Zech R., Wolfsperger E., Suhai S., Zurhausen H. 1983; DNA sequence and genome organization of genital human papillomavirus type 6B. EMBO Journal 2:2341–2348
    [Google Scholar]
  36. Seif E. 1984; Sequence homology between the large tumor antigen of polyoma viruses and the putative El protein of papilloma viruses. Virology 138:347–352
    [Google Scholar]
  37. Seif R. 1982; New properties of simian virus 40 large T antigen. Molecular and Cellular Biology 2:1463–1471
    [Google Scholar]
  38. Shade R. O., Blundell M. C., Cotmore S. F., Tattersall P., Astell C. R. 1986; Nucleotide sequence and genome organization of human parvovirus B19 isolated from the serum of a child during aplastic crisis. Journal of Virology 58:921–936
    [Google Scholar]
  39. Siegl G. 1984; Biology and pathogenicity of autonomous parvoviruses. In The Parvoviruses pp 279–362 Berns K. I. Edited by New York: Plenum Press;
    [Google Scholar]
  40. Soeda E., Arrand J. R., Smolar N., Walsh I. E., Griffin B. E. 1980; Coding potential and regulatory signals of the polyoma virus genome. Nature; London: 283445–453
    [Google Scholar]
  41. Srivastava A., Lusby E. W., Berns K. I. 1983; Nucleotide sequence and organization of the adeno-associated virus 2 genome. Journal of Virology 45:555–564
    [Google Scholar]
  42. Summers J., Jones S. E., Anderson M. J. 1983; Characterization of the genome of the agent of erythrocyte aplasia permits its classification as a human parvovirus. Journal of General Virology 64:2527–2532
    [Google Scholar]
  43. Tooze J.editor 1981 Molecular Biology of Tumor Viruses, 2nd edn.. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  44. Tratschin J.-D., Miller I. L., Carter B. J. 1984; Genetic analysis of adeno-associated virus: properties of deletion mutants constructed in vitro and evidence for an adeno-associated virus replication function. Journal of Virology 51:611–619
    [Google Scholar]
  45. Walker J. E., Saraste M., Runswick M. J., Gay N. J. 1982; Distantly related sequences in the a- and β-subumts of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO Journal 1:945–951
    [Google Scholar]
  46. Weinstock G. M., Mcentee K., Lehman I. R. 1981; Hydrolysis of nucleoside triphosphates catalyzed by the recA protein of Escherichia coli. Journal of Biological Chemistry 256:8829–8835
    [Google Scholar]
  47. Wierenga R. K., Terpstra P., Hol W. G. J. 1986; Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprint. Journal of Molecular Biology 187:101–107
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-68-3-885
Loading
/content/journal/jgv/10.1099/0022-1317-68-3-885
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error