1887

Abstract

Summary

The complete nucleotide sequence of cloned cDNAs containing the E2 glycoproteinencoding region of the genome of transmissible gastroenteritis virus (TGEV) has been determined. A single large translatable frame of 4·3 kb starting at 8·2 kb from the 3′ end of the genome was identified. Its deduced amino acid sequence contains the characteristic features of a coronavirus peplomer protein: (i) the precursor polypeptide of TGEV E2 is 1447 residues long (i.e. 285 longer than the avian infectious bronchitis coronavirus spike protein); (ii) partial N-terminal sequencing demonstrated that a putative secretory signal sequence of 16 amino acids is absent in the virion-associated protein; (iii) the predicted mol. wt. of the apoprotein is 158K; most of the 32 potential -glycosylation sites available in the sequence are presumed to be functional to account for the difference between this and the experimentally determined value (200K to 220K); (iv) a typical hydrophobic sequence near the C terminus is likely to be responsible for anchoring the peplomer to the virion envelope.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-68-7-1883
1987-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/68/7/JV0680071883.html?itemId=/content/journal/jgv/10.1099/0022-1317-68-7-1883&mimeType=html&fmt=ahah

References

  1. Binns M. M., Boursnell M. E. G., Cavanagh D., Pappin D. J. C., Brown T. D. K. 1985; Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. Journal of General Virology 66:719–726
    [Google Scholar]
  2. Cavanagh D. 1983; Coronavirus IBV: structural characterization of the spike protein. Journal of General Virology 64:2577–2583
    [Google Scholar]
  3. Cavanagh D., Davis P. J. 1986; Coronavirus IBV: removal of spike glycopolypeptide SI by urea abolishes infectivity and haemagglutination but not attachment to cells. Journal of General Virology 67:1443–1448
    [Google Scholar]
  4. Cavanagh D., Davis P. J., Pappin D. J. c., Binns M. M., Boursnell M. E. G., Brown T. D. K. 1986; Coronavirus IBV: partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg- Arg at the cleavage site of the spike precursor propolypeptide of IBV strains Beaudette and M41. Virus Research 4:133–143
    [Google Scholar]
  5. De Groot R. J., Lenstra J. A., Jacobs L., Luytjes W., Niesters H. G. M., Horzinek M. C., Van Der Zeijst B. A. M. 1987; Structure and evolution of coronavirus peplomer proteins. In Biochemistry and Biology of Coronaviruses Lai M. M. C., Stohlman S. Edited by New York & London: Plenum Press; in press
    [Google Scholar]
  6. De Lisi C., Berzofsky J. 1985; T-cell antigenic sites tend to be amphipathic structures. Proceedings of the National Academy of Sciences, U.S.A 82:7048–7052
    [Google Scholar]
  7. Delmas B., Gelfi J., Laude H. 1986; Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. Journal of General Virology 67:1405–1418
    [Google Scholar]
  8. Dennis D. E., Brian D. A. 1982; RNA-dependent RNA polymerase activity in coronavirus-infected cells. Journal of Virology 42:153–164
    [Google Scholar]
  9. Fleming J. O., Trousdale M. D., El-Zaatari F. A. K., Stohlman S. A., Weiner L. P. 1986; Pathogenicity of antigenic variants of murine coronavirus JHM selected with monoclonal antibodies. Journal of Virology 58:869–875
    [Google Scholar]
  10. Frana M. F., Behnke J. N., Sturman L. s., Holmes K. V. 1985; Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: host-dependent differences in proteolytic cleavage and cell fusion. Journal of Virology 56:912–920
    [Google Scholar]
  11. Garwes D. J., Pocock D. H., Pike B. V. 1976; Isolation of subviral components from transmissible gastroenteritis virus. Journal of General Virology 32:283–294
    [Google Scholar]
  12. Garwes D. J., Lucas M. H., Higgins D. A., Pike B. V., Cartwright S. F. 1978/79; Antigenicity of structural components from porcine transmissible gastroenteritis virus. Veterinary Microbiology 3:179–190
    [Google Scholar]
  13. Garwes D. J., Stewart F., Elleman C. J. 1987; Identification of epitopes of immunological importance on the peplomer of porcine transmissible gastroenteritis virus. In Biochemistry and Biology of Coronaviruses Lai M. M. C., Stohlman S. Edited by New York & London: Plenum Press; in press
    [Google Scholar]
  14. Hopp T. p., Woods K. R. 1981; Prediction of protein antigenic determinants from amino acid sequences. Proceedings of the National Academy of Sciences, U.S.A 78:3824–3828
    [Google Scholar]
  15. Hu S., Bruszewski J., Boone T., Souza L. 1984; Cloning and expression of the surface glycoprotein gp195 of porcine transmissible gastroenteritis virus. In Modem Approaches to Vaccines pp. 219–223 Chanock R. M., Lerner R. A. Edited by New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  16. Jimenez G., Correa I., Melgosa M. P., Bullido M. J., Enjuanes L. 1986; Critical epitopes in transmissible gastroenteritis virus neutralization. Journal of Virology 60:131–139
    [Google Scholar]
  17. Kapke P. A., Brian D. A. 1986; Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virology 151:41–49
    [Google Scholar]
  18. Kozak M. 1986; Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292
    [Google Scholar]
  19. Laude H., Chapsal J.-M., Gelfi J., Labiau S., Grosclaude J. 1986; Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins. Journal of General Virology 61:119–130
    [Google Scholar]
  20. Laude H., Rasschaert D., Huet J.-C. 1987; Sequence and N-terminal processing of the transmembrane protein E1 of the coronavirus transmissible gastroenteritis virus. Journal of General Virology 68:1687–1693
    [Google Scholar]
  21. Mockett A. P. A., Cavanagh D., Brown T. D. K. 1984; Monoclonal antibodies to the S1 spike and membrane proteins of avian infectious bronchitis coronavirus strain Massachusetts M41. Journal of General Virology 65:2281–2286
    [Google Scholar]
  22. Niesters H. G. M., Lenstra J. A., Spaan W. J. M., Zijderveld A. J., Bleumink-Pluym N. M. C., Hong F., Van Scharrenburg G. J. M., Horzinek M. C., Van Der Zeijst B. A. M. 1986; The peplomer protein sequence of the M41 strain of coronavirus IBV and its comparison with Beaudette strains. Virus Research 5:253–263
    [Google Scholar]
  23. Rasschaert D., Delmas B., Charley B., Grosclaude J., Gelfi J., Laude H. 1987; Surface glycoproteins of transmissible gastroenteritis virus: functions and gene sequence. In Biochemistry and Biology of Coronaviruses Lai M. M. C., Stohlman S. Edited by New York & London: Plenum Press; in press
    [Google Scholar]
  24. Schmidt M. F. G. 1983; Fatty acid binding: a new kind of post-translational modification of membrane proteins. Current Topics in Microbiology and Immunology 102:101–129
    [Google Scholar]
  25. Siddell S. G., Anderson R., Cavanagh D., Fujiwara K., Klenk H. D., Macnaughton M. R., Pensaert M., Stohlman S. A., Sturman L., Van Der Zeijst B. A. M. 1983; Coronaviridae. Intervirology 20:181–189
    [Google Scholar]
  26. Sturman L. S., Ricard C. S., Holmes K. V. 1985; Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. Journal of Virology 56:904–911
    [Google Scholar]
  27. Talbot P. J., Buchmeier M. J. 1985; Antigenic variation among murine coronaviruses: evidence for polymorphism on the peplomer glycoprotein, E2. Virus Research 2:317–328
    [Google Scholar]
  28. Von Heijne G. 1986; A new method for predicting signal sequence cleavage sites. Nucleic Acids Research 14:4683–4690
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-68-7-1883
Loading
/content/journal/jgv/10.1099/0022-1317-68-7-1883
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error