1887

Abstract

Summary

We present the nucleotide sequence of the glycoprotein H (gH) gene of herpesvirus saimiri (HVS), a representative of the T lymphotropic herpesviruses of New World monkeys, and compare the predicted amino acid sequence with sequences of homologous proteins from four human herpesviruses. The HVS gH gene is located within a block of genes encoding products conserved in all herpesvirus subgroups as represented by the human herpesviruses herpes simplex virus, varicella-zoster virus, cytomegalovirus and Epstein-Barr virus. In agreement with the biological grouping of HVS as a lymphotropic gammaherpesvirus, its gH amino acid sequence shows greatest similarity to that of the B lymphotropic Epstein-Barr virus, although the nucleotide sequences of their respective gH genes show little similarity given different G+C compositions of 31% and 54%. The similarity observed between the gH amino acid sequences of the two representative gammaherpesviruses is greater than that between the two human alphaherpesviruses varicella-zoster virus and herpes simplex virus. The members of the gH family range in size from 706 to 743 amino acid residues for the beta- and gammaherpesviruses, to 838 to 841 for the alphaherpesviruses, giving non-glycosylated precursors with values of 78322 to 93651. The difference in size is due to heterogeneity in the poorly conserved N-terminal regions of the larger alphaherpesviruses compared to the smaller beta- and gammaherpesvirus molecules. Greatest similarity is observed in the C-terminal halves of the proteins including residues surrounding four conserved cysteine residues, a conserved -linked glycosylation site (within the sequence NGTV) 13 to 18 residues proximal to the membrane-spanning sequences, and a short cytoplasmic domain of seven or eight residues for the beta- and gammaherpesviruses’ and 14 or 15 residues for the alphaherpesviruses’ gH. Thus, the representatives of all subgroups of herpesviruses, including those with a non-human host, encode gH homologues. Together with the observation that gH of these viruses are major targets for virus neutralization by antibody, this suggests that this glycoprotein family is essential among all herpesviruses and represents a major component involved in herpesvirus infectivity.

Keyword(s): glycoprotein H , herpesviruses and HVS
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-69-11-2819
1988-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/69/11/JV0690112819.html?itemId=/content/journal/jgv/10.1099/0022-1317-69-11-2819&mimeType=html&fmt=ahah

References

  1. BAER R., BANKIER A. T., BIGGIN M. D., DEININGER P. L., FARRELL P. J., GIBSON T. J., HATFULL G., HUDSON G. S., SATCHWELL S. A, SÉGUIN C, TUFFNELL P. S., BARRELL B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature, London 310:207–211
    [Google Scholar]
  2. BALACHANDRAN N., HUTT-FLETCHER L. M. 1986; Detection by monoclonal antibodies of an early membrane protein induced by Epstein-Barr virus. Journal of Virology 60:369–379
    [Google Scholar]
  3. BANKIER A. T., BARRELL B. G. 1983 Shotgun DNA sequencing. Techniques in the Life Sciences B51–33 Edited by Flavell R. A. Amsterdam: Elsevier/North Holland;
    [Google Scholar]
  4. BIGGIN M. D., GIBSON T. J., HONG C. F. 1983; Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proceedings of the National Academy of Sciences, U.S.A 80:3963–3965
    [Google Scholar]
  5. BIRNSTIEL M. L., BUSSLINGER M., STRUB K. 1985; Transcription termination and 3′ processing: the end is in site !. Cell 41:349–359
    [Google Scholar]
  6. BUCHER P., TRIFONOV E. N. 1986; Compilation and analysis of eukaryotic POL II promoter sequences. Nucleic Acids Research 14:10009–10026
    [Google Scholar]
  7. BUCKMASTER E. A., GOMPELS U., MINSON A. 1984; Characterisation and physical mapping of an HSV-1 glycoprotein of approximately 115 × 103 molecular weight. Virology 139:408–413
    [Google Scholar]
  8. CHEN H. R., BARKER W. C. 1985; The Protein Identification Resource and its application. Trends in Genetics 8:221–223
    [Google Scholar]
  9. CRANAGE M. P., KOUZARIDES T., BANKIER A. T., SATCHWELL S., WESTON K., TOMLINSON P., BARRELL B., HART H., BELL S. E., MINSON A. C., SMITH G. L. 1986; Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus. EMBO Journal 5:3057–3063
    [Google Scholar]
  10. CRANAGE M. P., SMITH G. L., BELL S. E., HART H., BROWN C, BANKIER A. T., TOMLINSON P., BARRELL B. G., MINSON T. C. 1988; Identification and expression of a human cytomegalovirus (HCMV) glycoprotein with homology to EBV BXLF2 product, VZV gpIH and HSV-1 glycoprotein H. Jounal of Virology 62:1416–1422
    [Google Scholar]
  11. DAVISON A. J., TAYLOR P. 1987; Genetic relations between varicella-zoster virus and Epstein-Barr virus. Journal of General Virology 68:1067–1079
    [Google Scholar]
  12. DAVISON A. J., EDSON C M., ELLIS R. W., FORGHANI B., GILDEN D., GROSE C, KELLER P. M., VAFAI A., WROBLEWSKA Z., YAMANISHI K. 1986; New common nomenclature for glycoprotein genes of varicella-zoster virus and their glycosylated products. Journal of Virology 57:1195–1197
    [Google Scholar]
  13. DAYHOFF M. O. 1969 Atlas of Protein Sequence and Structure Silver Springs: National Biomedical Research Foundation;
    [Google Scholar]
  14. DAYHOFF M. O., BARKER W. C., HUNT L. T. 1983; Establishing homologies in protein sequences. Methods in Enzymology 91:524–545
    [Google Scholar]
  15. DEININGER P. 1983; Random subcloning of sonicated DNA: application to shotgun DNA sequence analysis. Analytical Biochemistry 129:216–223
    [Google Scholar]
  16. DESAI P. J., SCHAFFER P. A., MINSON A. C. 1988; Excretion of non-infectious virus particles lacking glycoprotein H by a temperature-sensitive mutant of herpes simplex virus type 1: evidence that gH is essential for virion infectivity. Journal of General Virology 69:1147–1156
    [Google Scholar]
  17. DESROSIERS R. C, BAKKER A., KAMINE J., FALK L. A., HUNT R. D., KING N. W. 1985; A region of the herpesvirus genome required for oncogenicity. Science 228:184–187
    [Google Scholar]
  18. EISENBERG D. 1984; Three-dimensional structure of membrane and surface proteins. Annual Review of Biochemistry 53:595–623
    [Google Scholar]
  19. FENG D. F., JOHNSON M. S., DOOLITTLE R. F. 1985; Aligning amino acid sequences: comparison of commonly used methods. Journal of Molecular Evolution 21:112–125
    [Google Scholar]
  20. FORGHANL B., DUPUIS K. W., SCHMIDT M. J. 1984; VariceDa-zoster viral glycoproteins analyzed with monoclonal antibodies. Journal of Virology 52:55–62
    [Google Scholar]
  21. GOMPELS U., MINSON A. 1986; The properties and sequence of glycoprotein H of herpes simplex virus type 1. Virology 153:230–247
    [Google Scholar]
  22. GOMPELS U. A., CRAXTON M. A., HONESS R. W. 1988; Conservation of the gene organization in lymphotropic herpesviruses, herpesvirus saimiri and Epstein-Barr virus. Journal of Virology 62:757–767
    [Google Scholar]
  23. GRETCH D. R., KARI B., RASMUSSEN L., GEHRZ R. C., STINSKI M. F. 1988; Identification and characterization of three distinct families of glycoprotein complexes in the envelopes of human cytomegalovirus. Journal of Virology 62:875–881
    [Google Scholar]
  24. GROSE C, EDWARDS D. P., FRIEDRICHS W. E., WEIGLE K. A., MCGUIRE W. L. 1983; Monoclonal antibodies against three major glycoproteins of varicella-zoster virus. Infection and Immunity 40:381–388
    [Google Scholar]
  25. HEINEMAN T., GONG M., SAMPLE J., KIEFF E. 1988; Identification of the Epstein-Barr virus gp85 gene. Journal of Virology 62:1101–1107
    [Google Scholar]
  26. HOFFMAN G. J., LAZAROWITZ S. G., HAYWARD S. D. 1980; Monoclonal antibody against a 250,000-dalton glycoprotein of Epstein-Barr virus identifies a membrane antigen and a neutralizing antigen. Proceedings of the National Academy of Sciences, U.S.A 77:2979
    [Google Scholar]
  27. HONESS R. W. 1984; Herpes simplex and ‘the herpes complex’: diverse observations and a unifying hypothesis. Journal of General Virology 65:2077–2107
    [Google Scholar]
  28. HONESS R. W., WATSON D. H. 1977; Unity and diversity in the herpesviruses. Journal of General Virology 37:15–37
    [Google Scholar]
  29. HONESS R. W., BODEMER W., CAMERON K. R., NILLER H. H., FLECKENSTEIN B., RANDALL R. E. 1986; The A + T-rich genome of herpesvirus saimiri contains a highly conserved gene for thymidylate synthase. Proceedings of the National Academy of Sciences, U.S.A 83:3604–3608
    [Google Scholar]
  30. KARI B., LUSSENHOP N., GOERTZ R., WABUKE-BUNOTI M., RADEKE R., GEHRZ R. 1986; Characterization of monoclonal antibodies reactive to several biochemically distinct human cytomegalovirus glycoprotein complexes. Journal of Virology 60:345–352
    [Google Scholar]
  31. KELLER P. M., NEFF B. J., ELLIS R. W. 1984; Three major glycoprotein genes of varicella-zoster virus whose products have neutralization epitopes. Journal of Virology 52:293–297
    [Google Scholar]
  32. KELLER P. M., DAVISON A. J., LOWE R. S., RIEMEN M. W., ELLIS R. W. 1987; Identification and sequence of the gene encoding gpIII, a major glycoprotein of varicella-zoster virus. Virology 157:526–533
    [Google Scholar]
  33. KNUST E., SCHIRM S., DIETRICH W., BODEMER W., KOLB E., FLECKENSTEIN B. 1983; Cloning of herpesvirus saimiri DNA fragments representing the entire L-region of the genome. Gene 25:281–289
    [Google Scholar]
  34. KOIZUMI S., FUKIWARA S., KIKUTA H., OKANA M., IMAI S., MIZUNO F., OSATO T. 1986; Production of human monoclonal antibodies against Epstein-Barr virus-specific antigens by the virus-immortalized lymphoblas-toid cell lines. Virology 150:161–169
    [Google Scholar]
  35. KORNFELD R., KORNFELD S. 1985; Assembly of asparagine-linked oligosaccharides. Annual Review of Biochemistry 54:631–644
    [Google Scholar]
  36. KOUZARIDES T., BANKIER A. T., SATCHWELL S. C, WESTON K., TOMLINSON P., BARRELL B. G. 1987; Large-scale rearrangement of homologous regions in the genomes of HCMV and EBV. Virology 157:397–413
    [Google Scholar]
  37. KYTE J., DOOLITTLE R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  38. LIPMAN D. L., PEARSON W. R. 1985; Rapid and sensitive protein similarity searches. Science 227:1435–1441
    [Google Scholar]
  39. MCGEOCH D. J. 1985; On the predictive recognition of signal peptide sequences. Virus Research 3:271–286
    [Google Scholar]
  40. MCGEOCH D. J., DAVISON A. J. 1986; DNA sequence of the herpes simplex virus type 1 gene encoding glycoprotein gH, and identification of homologues in the genome of varicella-zoster virus and Epstein-Barr virus. Nucleic Acids Research 14:111–114
    [Google Scholar]
  41. MCLAUCHLAN J., GAFFNEY D., WHITTON J. L., CLEMENTS J. B. 1985; The consensus sequence YGTGTTYY located downstream from the AATAAA signal is required for efficient formation of mRNA 3′ termini. Nucleic Acids Research 13:1347–1368
    [Google Scholar]
  42. MESSING J. 1983; New M13 vectors for cloning. Methods in Enzymology 101:20–78
    [Google Scholar]
  43. MONTALVO E. A., GROSE C. 1986; Neutralization epitope of varicella zoster virus on native viral glycoprotein gpll8 (VZV glycoprotein gpIII). Virology 149:230–241
    [Google Scholar]
  44. MUELLER-LANTZCH N., GEORG-FRIES B., HERBST H., ZUR HAUSEN H., BRAUN D. G. 1981; Epstein-Barr virus strain and group specific antigenic determinants detected by monoclonal antibodies. International Journal of Cancer 28:321–327
    [Google Scholar]
  45. NEMEROW G. R., MOLD C, SCHWEND V. K., TOLLEFSON V., COOPER N. R. 1987; Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d. Journal of Virology 61:1416–1420
    [Google Scholar]
  46. OBA D. E., HUTT-FLETCHER L. M. 1988; Induction of antibodies to the Epstein-Barr virus glycoprotein gp85 with a synthetic peptide corresponding to a sequence in the BXLF2 open reading frame. Journal of Virology 62:1108–1114
    [Google Scholar]
  47. PARA M. F., PARISH M. L., NOBLE G., SPEAR P. 1985; Potent neutralizing activity associated with anti-glycoprotein D specificity among monoclonal antibodies selected for binding to herpes simplex virions. Journal of Virology 55:483–488
    [Google Scholar]
  48. PEREIRA L., HOFFMAN M., GALLO P., CREMER N. 1982; Monoclonal antibodies to human cytomegalovirus: three surface membrane proteins with unique immunological and electrophoretic properties specify cross-reactive determinants. Infection and Immunity 36:924–932
    [Google Scholar]
  49. QUALTIERE L. F., CHASE R., VROMAN B., PEARSON G. R. 1982; Identification of Epstein-Barr virus strain differences with monoclonal antibody to a membrane glycoprotein. Proceedings of the National Academy of Sciences, U.S.A 79:616–620
    [Google Scholar]
  50. RASMUSSEN L. E., NELSON R. M., KELSALL D. C., MERIGAN T. C. 1984; Murine monoclonal antibody to a single protein neutralizes the infectivity of human cytomegalovirus. Proceedings of the National Academy of Sciences, U.S.A 81:876–880
    [Google Scholar]
  51. RASMUSSEN L., MULLENAX J., NELSON R., MERIGAN T. C. 1985; Viral polypeptides detected by a complement-dependent neutralizing murine monoclonal antibody to human cytomegalovirus. Journal of Virology 55:274–280
    [Google Scholar]
  52. ROIZMAN B. editor 1982 The family Herpesviridae: general description, taxonomy, and classification. The Herpesviruses 11–23 New York & London: Plenum Press;
    [Google Scholar]
  53. SAIRENJI T., REISERT P. S., SPIRO R. C, CONNALLY T., HUMPHREYS R. E. 1985; Inhibition of Epstein-Barr virus (EBV) release from the P3HR-1 Burkitt’s lymphoma cell-line by a monoclonal antibody against a 200,000 dalton EBV antigen. Journal of Experimental Medicine 161:1097–1111
    [Google Scholar]
  54. SANGER F., NICKLEN S., COULSON A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 74:5463–5467
    [Google Scholar]
  55. SCHLESINGER M. J., SCHLESINGER S. 1987; Domains of virus glycoproteins. Advances in Virus Research 33:1–44
    [Google Scholar]
  56. SHOW ALTER S. D., ZWEIG M., HAMPAR B. 1981; Monoclonal antibodies to herpes simplex virus type 1 proteins, including the immediate-early protein ICP4. Infection and Immunity 34:684–692
    [Google Scholar]
  57. STADEN R. 1982a; Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Research 10:4731–4751
    [Google Scholar]
  58. STADEN R. 1982b; An interactive graphic program for comparing and aligning nucleic acid and amino acid sequences. Nucleic Acids Research 10:2951–2961
    [Google Scholar]
  59. STADEN R. 1984; Measurements of the effects that coding for a protein has on DNA sequence and their use for finding genes. Nucleic Acids Research 12:551–561
    [Google Scholar]
  60. STADEN R. 1986; The current status and portability of our sequence handling software. Nucleic Acids Research 14:217–231
    [Google Scholar]
  61. STAMMINGER T., HONESS R. W., YOUNG D. F., BODEMER W., BLAIR E. D., FLECKENSTEIN B. 1987; Organization of terminal reiterations in the virion DNA of herpesvirus saimiri. Journal of General Virology 68:1049–1066
    [Google Scholar]
  62. STRNAD B. C, SCHUSTER T., KLEIN R., HOPKINS R. F. III, WITMER T., NEUBAUER R. H., RABIN H. 1982; Production and characterization of monoclonal antibodies against the Epstein-Barr virus membrane antigen. Journal of Virology 44:258–264
    [Google Scholar]
  63. STRNAD B. C, ADAMS M. R., RABIN H. 1983; Glycosylation pathways of two major Epstein-Barr virus membrane antigens. Virology 127:168–176
    [Google Scholar]
  64. THORLEY-LAWSON D. A., GEILINGER K. 1980; Monoclonal antibodies against the major glycoprotein (gp350/220) of Epstein-Barr virus neutralize infectivity. Proceedings of the National Academy of Sciences, U.S.A 77:5307
    [Google Scholar]
  65. THORLEY-LAWSON P. A., POODRY C A. 1982; Identification and isolation of the main component (gp350-gp220) of Epstein-Barr virus responsible for generating neutralizing antibodies. in vivo. Journal of Virology 43:730–736
    [Google Scholar]
  66. TRIMBLE J. J., MURTHY S. C S., BAKKER A., GRASSMAN R., DESROSIERS R. C. 1988; A gene for dihydrofolate reductase in a herpesvirus. Science 239:1145–1147
    [Google Scholar]
  67. VON HEUNE G. 1985; Signal sequences, the limits of variation. Journal of Molecular Biology 184:99–105
    [Google Scholar]
  68. VON HEIJNE G. 1986; A new method for predicting signal sequence cleavage sites. Nucleic Acids Research 14:4683–4690
    [Google Scholar]
  69. WALTER P., GILMORE R., BLOBEL G. 1984; Protein translocation across the endoplasmic reticulum. Cell 38:5–8
    [Google Scholar]
  70. WEIHAR H., KÖNIG M., GRUSS P. 1983; Multiple point mutations affecting the simian virus 40 enhancer. Science 219:626–631
    [Google Scholar]
  71. WELLER S. K., ASCHMAN D. P., SACKS W. R., COEN D., SCHAFFER P. A. 1983; Genetic analysis of temperature sensitive mutants of HSV-1. The combined use of complementation and physical mapping for cistron assignment. Virology 130:290–305
    [Google Scholar]
  72. WILBUR W. J., LIPMAN D. J. 1983; Rapid similarity searches of nucleic acid and protein data banks. Proceedings of the National Academy of Sciences, U.S.A 80:726–730
    [Google Scholar]
  73. YOKOCHI T., CLARK E. A., KIMURA Y. 1986; Differential expression of Epstein-Barr virus membrane antigens defined with monoclonal antibodies. Virology 148:114–120
    [Google Scholar]
  74. ZHANG F., COLE C. N. 1987; Identification of a complex associated with processing and polyadenylation in vitro of herpes simplex virus type 1 thymidine kinase precursor RNA. Molecular and Cellular Biology 7:3277–3286
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-69-11-2819
Loading
/content/journal/jgv/10.1099/0022-1317-69-11-2819
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error