1887

Abstract

Introduction. Progress in coronavirology is illustrated by the number of workshops convened and reviews written. International meetings have been held in Germany (1980), the Netherlands (1983) and the U.S.A. (1986), and the Fourth Coronavirus Symposium will be organized by one of us (D.C.) in Cambridge, U.K. in July 1989. In addition, reviews have appeared which highlighted particularly interesting characteristics of the family, e.g. the replication strategy (Lai, 1986) and the glycoproteins (Sturman & Holmes, 1985). As the last general accounts were published some 5 years ago (Siddell , 1983; Sturman & Holmes, 1983) an update is timely. The present article is based on the large amount of sequence data accumulated in these years and focuses on the viral nucleic acids and proteins and their function.

Coronaviruses cause infections in man, other mammals and birds. Most experimental data have been obtained from studies of mouse hepatitis virus (MHV) and infectious bronchitis virus of chickens (IBV).

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-69-12-2939
1988-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/69/12/JV0690122939.html?itemId=/content/journal/jgv/10.1099/0022-1317-69-12-2939&mimeType=html&fmt=ahah

References

  1. ARMSTRONG J., SMEEKENS S., ROTTIER P. 1983; Sequence of the nucleocapsid gene from murine coronavirus MHV-A59. Nucleic Acids Research 11:883–891
    [Google Scholar]
  2. ARMSTRONG J., NIEMANN H., SMEEKENS S., ROTTIER P., WARREN G. 1984; Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus. Nature, London 308:751–752
    [Google Scholar]
  3. BARIC R. S., STOHLMAN S. A., LAI M. M. C. 1983; Characterization of replicative intermediate RNA of mouse hepatitis virus: presence of leader RNA sequences on nascent chains. Journal of Virology 48:633–640
    [Google Scholar]
  4. BARIC R. S., STOHLMAN S. A., RAZAVI M. K., LAI M. M. C. 1985; Characterization of leader-related small RNAs in coronavirus-infected cells: further evidence for leader-primed mechanism of transcription. Virus Research 3:19–33
    [Google Scholar]
  5. BARIC R. S., SHIEH C. K., STOHLMAN S. A., LAI M. M. C. 1987; Analysis of intracellular small RNAs of mouse hepatitis virus: evidence for discontinuous transcription. Virology 156:342–354
    [Google Scholar]
  6. BINNS M. M., BOURSNELL M. E. G., CAVANAGH D., PAPPIN D. J. C., BROWN T. D. K. 1985; Cloning and sequencing of the gene encoding the spike protein of the corona virus IBV. Journal of General Virology 66:719–726
    [Google Scholar]
  7. BINNS M. M., BOURSNELL M. E. G., TOMLEY F. M., BROWN T. D. K. 1986a; Nucleotide sequence encoding the membrane protein of the IBV strain 6/82. Nucleic Acids Research 14:5558
    [Google Scholar]
  8. BINNS M. M., BOURSNELL M. E. G., TOMLEY F. M., BROWN T. D. K. 1986b; Comparison of the spike precursor sequences of coronavirus IBV strains M41 and 6/82 with that of IBV Beaudette. Journal of General Virology 67:2825–2831
    [Google Scholar]
  9. BOURSNELL M. E. G., BROWN T. D. K. 1984; Sequencing of coronavirus IBV genomic RNA: a 195-base open reading frame encoded by mRNA B. Gene 29:87–92
    [Google Scholar]
  10. BOURSNELL M. E. G., BROWN T. D. K., BINNS M. M. 1984; Sequence of the membrane protein gene from avian coronavirus IBV. Virus Research 1:303–313
    [Google Scholar]
  11. BOURSNELL M. E. G., BINNS M. M., FOULDS I.J., BROWN T. D. K. 1985a; Sequences of the nucleocapsid genes from two strains of avian infectious bronchitis virus. Journal of General Virology 66:573–580
    [Google Scholar]
  12. BOURSNELL M. E. G., BINNS M. M., BROWN T. D. K. 1985b; Sequencing of coronavirus IBV genomic RNA: three open reading frames in the 5′ ‘unique’ region of mRNA D. Journal of General Virology 66:2253–2258
    [Google Scholar]
  13. BOURSNELL M. E. G., BROWN T. D. K., FOULDS I. J., GREEN P. F., TOMLEY F. M., BINNS M. M. 1987; Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. Journal of General Virology 68:57–77
    [Google Scholar]
  14. BOYLE J. F., WEISMILLER D. G., HOLMES K. V. 1987; Genetic resistance to mouse hepatitis virus correlates with absence of virus-binding activity on target tissues. Journal of Virology 61:185–189
    [Google Scholar]
  15. BRAYTON P. R., LAI M. M. C, PATTON D. F., STOHLMAN S. A. 1982; Characterization of two RNA polymerase activities induced by mouse hepatitis virus. Journal of Virology 42:847–853
    [Google Scholar]
  16. BRAYTON P. R., STOHLMAN S. A., LAI M. M. C. 1984; Further characterization of mouse hepatitis virus RNA-dependent RNA polymerases. Virology 133:197–201
    [Google Scholar]
  17. BREDENBEEK P. J., NOTEN J. F., LENSTRA J. A., HORZINEK M. C, VAN DER ZEIJST B. A. M., SPAAN W. J. M. 1986; The nucleotide sequence of the extreme 5′ end of the avian coronavirus genome; implications for the discontinuous mRNA synthesis. Nucleic Acids Research 14:7806
    [Google Scholar]
  18. BREDENBEEK P. J., CHARITE J., NOTEN J. F., LUYTJES W., HORZINEK M. C, VAN DER ZEIJST B. A. M., SPAAN W. J. M. 1987; Sequences involved in the replication of coronaviruses. Advances in Experimental Medicine and Biology 218:65–72
    [Google Scholar]
  19. BRIERLEY I., BOURSNELL M. E. G., BINNS M. M., BILIMORIA B., BLOK V. C, BROWN T. D. K., INGLIS S. C. 1987; An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO Journal 6:3779–3785
    [Google Scholar]
  20. BROWN T. D. K., BOURSNELL M. E. G. 1984; Avian infectious bronchitis virus genomic RNA contains sequence homologies at the intergenic boundaries. Virus Research 1:15–24
    [Google Scholar]
  21. BROWN T. D. K., BOURSNELL M. E. G., BINNS M. M. 1984; A leader sequence is present on mRNA A of avian infectious bronchitis virus. Journal of General Virology 65:1437–1442
    [Google Scholar]
  22. BROWN T. D. K., BOURSNELL M. E. G., BINNS M. M., TOMLEY F. M. 1986; Cloning and sequencing of 5′ terminal sequences from avian infectious bronchitis virus genomic RNA. Journal of General Virology 67:221–228
    [Google Scholar]
  23. BUDZILOWICZ C. J., WEISS S. R. 1987; In vitro synthesis of two polypeptides from a nonstructural gene of coronavirus mouse hepatitis virus strain A59. Virology 157:509–515
    [Google Scholar]
  24. BUDZILOWICZ C. J., WILCZYNSKI S. P., WEISS S. R. 1985; Three intergenic regions of coronavirus mouse hepatitis virus strain A59 genome RNA contain a common nucleotide sequence that is homologous to the 3′ end of the viral mRNA leader sequence. Journal of Virology 53:834–840
    [Google Scholar]
  25. CAVANAGH D. 1981; Structural polypeptides of coronavirus IBV. Journal of General Virology 53:93–103
    [Google Scholar]
  26. CAVANAGH D. 1983a; Coronavirus IBV glycopolypeptides: size of their polypeptide moieties and nature of their oligosaccharides. Journal of General Virology 64:1187–1191
    [Google Scholar]
  27. CAVANAGH D. 1983b; Coronavirus IBV: further evidence that the surface projections are associated with two glycopolypeptides. Journal of General Virology 64:1787–1791
    [Google Scholar]
  28. CAVANAGH D. 1983c; Coronavirus IBV: structural characterization of the spike protein. Journal of General Virology 64:2577–2583
    [Google Scholar]
  29. CAVANAGH D., DAVIS P. J. 1986; Coronavirus IBV: removal of spike glycopolypeptide S1 by urea abolishes infectivity and haemagglutination but not attachment to cells. Journal of General Virology 67:1443–1448
    [Google Scholar]
  30. CAVANAGH D., DAVIS P. J. 1987; Coronavirus IBV: relationship among recent European isolates studied by limited proteolysis of the virion glycopolypeptides. Avian Pathology 16:1–13
    [Google Scholar]
  31. CAVANAGH D., DAVIS P. J. 1988; Evolution of avian coronavirus IBV: sequence of the matrix glycoprotein gene and intergenic region of several serotypes. Journal of General Virology 69:621–629
    [Google Scholar]
  32. CAVANAGH D., DAVIS P. J., PAPPIN D. J. C. 1986a; Coronavirus IBV glycopolypeptides: loeational studies using proteases and saponin, a membrane permeabilizer. Virus Research 4:145–156
    [Google Scholar]
  33. CAVANAGH D., DAVIS P. J., PAPPIN D. J. C, BINNS M. M., BOURSNELL M. E. G., BROWN T. D. K. 1986b; Coronavirus IBV: partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor propolypeptide of IBV strains Beaudette and M41. Virus Research 4:133–143
    [Google Scholar]
  34. COLLINS A. R., KNOBLER R. L., POWELL H., BUCHMEIER M. J. 1982; Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology 119:358–371
    [Google Scholar]
  35. COMPTON S. R., ROGERS D. B., HOLMES K. V., FERTSCH D., REMENICK J., MCGOWAN J. J. 1987; In Vitro replication of mouse hepatitis virus strain A59. Journal of Virology 61:1814–1820
    [Google Scholar]
  36. DE GROOT R. J., LUYTJES W., HORZINEK M. C, VAN DER ZEIJST B. A. M., SPAAN W. J. M., LENSTRA J. A. 1987a; Evidence for a coiled-coil structure in the spike proteins of coronaviruses. Journal of Molecular Biology 196:963–966
    [Google Scholar]
  37. DE GROOT R. J., MADURO J., LENSTRA J. A., HORZINEK M. C, VAN DER ZEIJST B. A. M., SPAAN W. J. M. 1987b; cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus. Journal of General Virology 68:2639–2646
    [Google Scholar]
  38. DE GROOT R. J., TER HAAR R. J., HORZINEK M. E., VAN DER ZEIJST B .A. M. 1987c; Intracellular RNAsof the feline infectious peritonitis coronavirus strain 79-1146. Journal of General Virology 68:995–1002
    [Google Scholar]
  39. DENISON M. R., PERLMAN S. 1986; Translation and processing of mouse hepatitis virus virion RNA in a cell-free system. Journal of Virology 60:12–18
    [Google Scholar]
  40. DENISON M., PERLMAN S. 1987; Identification of putative polymerase gene product in cells infected with murine coronavirus A59. Virology 157:565–568
    [Google Scholar]
  41. DENNIS D. E., BRIAN D. A. 1982; RNA-dependent RNA polymerase activity in coronavirus-infected cells. Journal of Virology 42:153–164
    [Google Scholar]
  42. DEREGT D., SABARA M., BABIUK L. A. 1987; Structural proteins of bovine coronavirus and their intracellular processing. Journal of General Virology 68:2863–2877
    [Google Scholar]
  43. EBNER D., RAABE T., SIDDELL S. G. 1988; Identification of the coronavirus MHV-JHM mRNA 4 product. Journal of General Virology 69:1041–1050
    [Google Scholar]
  44. FRANA M. F., BEHNKE J. N., STURMAN L. S., HOLMES K. V. 1985; Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: host-dependent differences in proteolytic cleavage and cell fusion. Journal of Virology 56:912–920
    [Google Scholar]
  45. GARWES D. J., REYNOLDS D. J. 1981; The polypeptide structure of canine coronavirus and its relationship to porcine transmissible gastroenteritis virus. Journal of General Virology 52:153–157
    [Google Scholar]
  46. GARWES D. J., BOUNTIFF L., MILLSON G. C, ELLEMAN C. J. 1984; Defective replication of porcine transmissible gastroenteritis virus in a continuous cell line. Advances in Experimental Medicine and Biology 173:79–93
    [Google Scholar]
  47. HOGUE B. G., BRIAN D. A. 1986; Structural proteins of human respiratory coronavirus OC43. Virus Research 5:131–144
    [Google Scholar]
  48. HOGUE B. G., KING B., BRIAN D. A. 1984; Antigenic relationships among proteins of bovine coronavirus, human respiratory coronavirus OC43, and mouse hepatitis coronavirus A59. Journal of Virology 51:384–388
    [Google Scholar]
  49. HOLMES K. V., DOLLER E. W., STURMAN L. S. 1981; Tunicamycin-resistant glycosylation of coronavirus glycoprotein: demonstration of a novel type of viral glycoprotein. Virology 115:334–344
    [Google Scholar]
  50. HORZINEK M. C, LUTZ H., PEDERSEN N. C. 1982; Antigenic relationships among homologous structural polypeptides of porcine, feline, and canine coronaviruses. Infection and Immunity 37:1148–1155
    [Google Scholar]
  51. JACOBS L., VAN DER ZEIJST B. A. M., HORZINEK M. C. 1986; Characterization and translation of transmissible gastroenteritis virus mRNAs. Journal of Virology 57:1010–1015
    [Google Scholar]
  52. JACOBS L., DE GROOT R., VAN DER ZEIJST B. A. M., HORZINEK M. C., SPAAN W. 1987; The nucleotide sequence of the peplomer gene of porcine transmissible gastroenteritis virus (TGEV): comparison with the sequence of the peplomer protein of feline infectious peritonitis virus (FIPV). Virus Research 8:363–371
    [Google Scholar]
  53. KAPKE P. A., BRIAN D. A. 1986; Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virology 151:41–49
    [Google Scholar]
  54. KECK J. G., STOHLMAN S. A., SOE L. H., MARINO S., LAI M. M. C. 1987; Multiple recombination sites at the 5′-end of murine coronavirus RNA. Virology 156:331–341
    [Google Scholar]
  55. KECK J. G., HOGUE B. G., BRIAN D. A., LAI M. M. C. 1988a; Temporal regulation of bovine coronavirus RNA synthesis. Virus Research 9:343–356
    [Google Scholar]
  56. KECK J. G., MATSUSHIMA G. K., MAKINO S., FLEMING J. O., VANNIER D. M., STOHLMAN S. A., LAI M. M. C. 1988b; In vivo RNA-RNA recombination of coronavirus in mouse brain. Journal of Virology 62:1810–1813
    [Google Scholar]
  57. KING B., POTTS B. J., BRIAN D. A. 1985; Bovine coronavirus hemagglutinin protein. Virus Research 2:53–59
    [Google Scholar]
  58. KIRKEGAARD K., BALTIMORE D. 1986; The mechanism of RNA recombination in poliovirus. Cell 47:433–443
    [Google Scholar]
  59. KOZAK M. 1987; An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Research 15:8125–8133
    [Google Scholar]
  60. KRZYSTYNIAK K., DUPUY J. M. 1984; Entry of mouse hepatitis virus 3 into cells. Journal of General Virology 65:227–231
    [Google Scholar]
  61. LAI M. M. C. 1986; Coronavirus leader-RNA-primed transcription: an alternative mechanism to RNA splicing. BioEssays 5:257–260
    [Google Scholar]
  62. LAI M. M. C, PATTON C. D., STOHLMAN S. A. 1982; Replication of mouse hepatitis virus: negative-stranded RNA and replicative form RNA are of genome length. Journal of Virology 44:487–492
    [Google Scholar]
  63. LAI M. M. C, PATTON C. D., BARIC R. S., STOHLMAN S. A. 1983; Presence of leader sequences in the mRNA of mouse hepatitis virus. Journal of Virology 46:1027–1033
    [Google Scholar]
  64. LAI M. M. C, BARIC R. S., BRAYTON P. R., STOHLMAN S. A. 1984; Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus. Proceedings of the National Academy of Sciences, U.S.A 81:3626–3630
    [Google Scholar]
  65. LAI M. M. C, BARIC R. S., MAKINO S., KECK J. G., EGBERT I., LEIBOWITZ I. L., STOHLMAN S. A. 1985; Recombination between nonsegmented RNA genomes of murine coronaviruses. Journal of Virology 56:449–456
    [Google Scholar]
  66. LAPPS W., HOGUE B. G., BRIAN D. A. 1987; Sequence analysis of the bovine corona virus nucleocapsid and matrix protein genes. Virology 157:47–57
    [Google Scholar]
  67. LAUDE H., RASSCHAERT D., HUET J.-C. 1987; Sequence and N-terminal processing of the transmembrane protein E1 of the coronavirus transmissible gastroenteritis virus. Journal of General Virology 68:1687–1693
    [Google Scholar]
  68. LEIBOWITZ J. L., DE VRIES J. R., HASPEL M. V. 1982; Genetic analysis of murine hepatitis virus strain JHM. Journal of Virology 42:1080–1087
    [Google Scholar]
  69. LEIBOWITZ J. L., PERLMAN S., WEINSTOCK G., DE VRIES J. R., BUDZILOWICZ C, WEISSEMANN J. M., WEISS S. R. 1988; Detection of a murine coronavirus nonstructural protein encoded in a downstream open reading frame. Virology 164:156–164
    [Google Scholar]
  70. LUYTJES W., STURMAN L. S., BREDENBEEK P. J., CHARITE J., VAN DER ZEIJST B. A., HORZINEK M. C., SPAAN W. J. 1987; Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology 161:479–487
    [Google Scholar]
  71. LUYTJES W., BREDENBEEK P. J., NOTEN A. F., HORZINEK M. C., SPAAN W. J. 1988; Sequence of mouse hepatitis virus A59 mRNA2: indications for RNA-recombination between coronaviruses and influenza C virus. Virology in press
    [Google Scholar]
  72. MACHAMER C. E., ROSE J. K. 1987; A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region. Journal of Cell Biology 105:1205–1214
    [Google Scholar]
  73. MAHY B. W. J., SIDDELL S., WEGE H., TER MEULEN V. 1983; RNA-dependent RNA polymerase activity in murine coronavirus-infected cells. Journal of General Virology 64:103–111
    [Google Scholar]
  74. MAKINO S., TAGUCHI F., HAYAMI M., FUJIWARA K. 1983; Characterization of small plaque mutants of mouse hepatitis virus, JHM strain. Microbiology and Immunology 27:445–454
    [Google Scholar]
  75. MAKINO S., TAGUCHI F., FUJIWARA K. 1984; Defective interfering particles of mouse hepatitis virus. Virology 133:9–17
    [Google Scholar]
  76. MAKINO S., FUJIOKA N., FUJIWARA K. 1985; Structure of the intracellular defective viral RNAs of defective interfering particles of mouse hepatitis virus. Journal of Virology 54:329–336
    [Google Scholar]
  77. MAKINO S., STOHLMAN S. A., LAI M. M. C. 1986a; Leader sequences of murine coronavirus mRNAs can be freely reassorted: evidence for the role of free leader RNA in transcription. Proceedings of the National Academy of Sciences. U.S.A 83:4204–4208
    [Google Scholar]
  78. MAKINO S., KECK J. G., STOHLMAN S. A., LAI M. M. C. 1986b; High-frequency RNA recombination of murine coronaviruses. Journal of Virology 57:729–737
    [Google Scholar]
  79. MAYER T., TAMURA T., FALK M., NEIMANN H. 1988; Membrane integration and intracellular transport of the coronavirus glycoprotein E1, a class III membrane glycoprotein. Journal of Biological Chemistry in press
    [Google Scholar]
  80. MIZZEN L., HILTON A., CHELEY S., ANDERSON R. 1985; Attenuation of murine coronavirus infection by ammonium chloride. Virology 142:378–388
    [Google Scholar]
  81. MOCKETT A. P. A., CAVANAGH D., BROWN T. D. K. 1984; Monoclonal antibodies to the S1 spike and membrane proteins of avian infectious bronchitis coronavirus strain Massachusetts M41. Journal of General Virology 65:2281–2286
    [Google Scholar]
  82. NIEMANN H., GEYER R., KLENK H. D., UNDER D., STIRM S., WIRTH M. 1984; The carbohydrates of mouse hepatitis virus (MHV) A59: structures of the O-glycosidically linked oligosaccharides of glycoprotein El. EMBO Journal 3:665–670
    [Google Scholar]
  83. NIESTERS H. G. 1987 Molecular epidemiology of infectious bronchitis virus Ph.D. thesis, University of Utrecht
    [Google Scholar]
  84. NIESTERS H. G., LENSTRA J. A., SPAAN W. J. M., ZIJDERVELD A. J., BLEUMINK-PLUYM N. M., HONG F., VAN SCHARRENBURG G. I., HORZINEK M. C, VAN DER ZEUST B. A. M. 1986; The peplomer protein sequence of the M41 strain of coronavirus IBV and its comparison with Beaudette strains. Virus Research 5:253–263
    [Google Scholar]
  85. PFLEIDERER M., SKINNER M. A., SIDDELL S. G. 1986; Coronavirus MHV-JHM: nucleotide sequence of the mRNA that encodes the membrane protein. Nucleic Acids Research 14:6338
    [Google Scholar]
  86. RASSCHAERT D., LAUDE H. 1987; The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus. Journal of General Virology 68:1883–1890
    [Google Scholar]
  87. RASSCHAERT D., GELFI J., LAUDE H. 1987; Enteric Coronavirus TGEV: partial sequence of the genomic RNA, its organization and expression. Biochimie 69:591–600
    [Google Scholar]
  88. RESTA S., LUBY J. P., ROSENFELD C. R., SIEGEL J. D. 1985; Isolation and propagation of a human enteric coronavirus. Science 229:978–981
    [Google Scholar]
  89. ROTTIER P. J., ROSE J. K. 1987; Coronavirus E1 glycoprotein expressed from cloned cDNA localizes in the Golgi region. Journal of Virology 61:2042–2045
    [Google Scholar]
  90. ROTTIER P. J., HORZINEK M. C., VAN DER ZEUST B. A. M. 1981; Viral protein synthesis in mouse hepatitis virus strain A59-infected cells: effect of tunicamycin. Journal of Virology 40:350–357
    [Google Scholar]
  91. ROTTIER P., BRANDENBURG D., ARMSTRONG J., VAN DER ZEUST B., WARREN G. 1984; Assembly in vitro of a spanning membrane protein of the endoplasmic reticulum: the E1 glycoprotein of coronavirus mouse hepatitis virus A59. Proceedings of the National Academy of Sciences, U.S.A 81:1421–1425
    [Google Scholar]
  92. ROTTIER P., ARMSTRONG J., MEYER D. I. 1985; Signal recognition particle-dependent insertion of coronavirus E1, an intracellular membrane glycoprotein. Journal of Biological Chemistry 260:4648–4652
    [Google Scholar]
  93. ROTTIER P. J., WELLING G. W., WELLING-WESTER S., NIESTERS H. G., LENSTRA J. A., VAN DER ZEUST B. A. M. 1986; Predicted membrane topology of the coronavirus protein El. Biochemistry 25:1335–1339
    [Google Scholar]
  94. SAWICKI S. G. 1987; Characterization of a small plaque mutant of the A59 strain of mouse hepatitis virus defective in cell fusion. Advances in Experimental Medicine and Biology 218:169–174
    [Google Scholar]
  95. SAWICKI S. G., SAWICKI D. L. 1986; Coronavirus minus-strand RNA synthesis and effect of cycloheximide on coronavirus RNA synthesis. Journal of Virology 57:328–334
    [Google Scholar]
  96. SCHMIDT I., SKINNER M., SIDDELL S. 1987; Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. Journal of General Virology 68:47–56
    [Google Scholar]
  97. SMEH C K., SOE L. H., MARINO S., CHANG M. F., STOHLMAN S. A., LAI M. M. C. 1987; The 5′-end sequence of the murine coronavirus genome: implications for multiple fusion sites in leader-primed transcription. Virology 156:321–330
    [Google Scholar]
  98. SIDDELL S. G. 1982; Coronavirus JHM: tryptic peptide fingerprinting of virion proteins and intracellular polypeptides. Journal of General Virology 62:259–269
    [Google Scholar]
  99. SIDDELL S. 1983; Coronavirus JHM: coding assignments of subgenomic mRNAs. Journal of General Virology 64:113–125
    [Google Scholar]
  100. SIDDELL S., WEGE H., TER MEULEN V. 1983; The biology of coronaviruses. Journal of General Virology 64:761–776
    [Google Scholar]
  101. SKINNER M. A., SIDDELL S. G. 1983; Coronavirus JHM: nucleotide sequence of the mRNA that encodes nucleocapsid protein. Nucleic Acids Research 11:5045–5054
    [Google Scholar]
  102. SKINNER M. A., SIDDELL S. G. 1985; Coding sequence of coronavirus MHV-JHM mRNA 4. Journal of General Virology 66:593–596
    [Google Scholar]
  103. SKINNER M. A., EBNER D., SIDDELL S. G. 1985; Coronavirus MHV-JHM mRNA 5 has a sequence arrangement which potentially allows translation of a second, downstream open reading frame. Journal of General Virology 66:581–592
    [Google Scholar]
  104. SMITH A. R., BOURSNELL M. E. G., BINNS M. M., BROWN T. D. K., INGLIS S. C. 1987; Identification of a new gene product encoded by mRNA D of infectious bronchitis virus. Advances in Experimental Medicine and Biology 218:47–54
    [Google Scholar]
  105. SOE L. H., SHIEH C. K., BAKER S. C, CHANG M. F., LAI M. M. C. 1987; Sequence and translation of the murine coronavirus 5′-end genomic RNA reveals the N-terminal structure of the putative RNA polymerase. Journal of Virology 61:3968–3976
    [Google Scholar]
  106. SPAAN W. J., ROTTIER P. J., HORZINEK M. C., VAN DER ZEIJST B. A. M. 1982; Sequence relationships between the genome and the intracellular RNA species 1, 3, 6, and 7 of mouse hepatitis virus strain A59. Journal of Virology 42:432–439
    [Google Scholar]
  107. SPAAN W., DELIUS H., SKINNER M., ARMSTRONG J., ROTTIER P., SMEEKENS S., VAN DER ZEUST B. A. M., SIDDELL S. G. 1983; Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. EMBO Journal 2:1839–1844
    [Google Scholar]
  108. STERN D. F., SEFTON B. M. 1982a; Coronavirus proteins: structure and function of the oligosaccharides of the avian infectious bronchitis virus glycoproteins. Journal of Virology 44:804–812
    [Google Scholar]
  109. STERN D. F., SEFTON B. M. 1982b; Coronavirus proteins: biogenesis of avian infectious bronchitis virus virion proteins. Journal of Virology 44:794–803
    [Google Scholar]
  110. STERN D. F., SEFTON B. M. 1984; Coronavirus multiplication: locations of genes for virion proteins on the avian infectious bronchitis virus genome. Journal of Virology 50:22–29
    [Google Scholar]
  111. STURMAN L. S., HOLMES K. V. 1983; The molecular biology of coronaviruses. Advances in Virus Research 28:35–112
    [Google Scholar]
  112. STURMAN L., HOLMES K. 1985; The novel glycoproteins of coronaviruses. Trends in Biochemical Sciences 10:17–20
    [Google Scholar]
  113. STURMAN L. S., HOLMES K. V., BEHNKE J. 1980; Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. Journal of Virology 33:449–462
    [Google Scholar]
  114. STURMAN L. S., RICARD C. S., HOLMES K. V. 1985; Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. Journal of Virology 56:904–911
    [Google Scholar]
  115. SUGIYAMA K., ISHIKAWA R., FUKUHARA N. 1986; Structural polypeptides of the murine coronavirus DVIM. Archives of Virology 89:245–254
    [Google Scholar]
  116. TAGUCHL F., SIDDELL S. G., WEGE H., TER MEULEN V. 1985; Characterization of a variant virus selected in rat brains after infection by coronavirus mouse hepatitis virus JHM. Journal of Virology 54:429–435
    [Google Scholar]
  117. TOOZE J., TOOZE S., WARREN G. 1984; Replication of coronavirus MHV-A59 in sac- cells: determination of the first site of budding of progeny virions. European Journal of Cell Biology 33:281–293
    [Google Scholar]
  118. VAN BERLO M. F., VAN DEN BRINK W. J., HORZINEK M. C., VAN DER ZEUST B. A. M. 1987; Fatty acid acylation of viral proteins in murine hepatitis virus-infected cells. Brief report. Archives of Virology 95:123–128
    [Google Scholar]
  119. VLASAK R., LUYTJES W., SPAAN W., PALESE P. 1988; Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proceedings of the National Academy of Sciences, V.S.A 85:4526–4529
    [Google Scholar]
  120. WEGE H., DÖRRIES R., WEGE H. 1984; Hybridoma antibodies to the murine coronavirus JHM: characterization of epitopes on the peplomer protein (E2). Journal of General Virology 65:1931–1942
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-69-12-2939
Loading
/content/journal/jgv/10.1099/0022-1317-69-12-2939
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error