1887

Abstract

Summary

The genome structure of equine herpesvirus 1 (EHV-1) subtype 2 was shown by electron microscopic studies and restriction endonuclease site mapping to comprise two covalently linked segments (L, 109 kbp; S, 35 kbp). The S segment contains a unique sequence (U) flanked by a substantial inverted repeat (TR/IR). Thus, the genome structure of EHV-1 subtype 2 is similar to that published previously for EHV-1 subtype 1, but the two subtypes differ in the occurrences of RI and HI restriction sites. Hybridization studies using cloned EHV-1 DNA showed that the genome of EHV-1 subtype 2 is colinear with the genomes of EHV-1 subtype 1 and herpes simplex virus type 1. DNA sequence data for four EHV-1 subtype 2 genes, including one potentially encoding a glycoprotein, were obtained by sequencing a 4574 bp HI fragment containing the junction between U and TR. The genome structure, hybridization and sequence data confirm that EHV-1 subtype 2 is of the alphaherpesvirus lineage.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-69-7-1575
1988-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/69/7/JV0690071575.html?itemId=/content/journal/jgv/10.1099/0022-1317-69-7-1575&mimeType=html&fmt=ahah

References

  1. ALLEN G. P., TURTINEN L. W. 1982; Assessment of the base sequence homology between the two subtypes of equine herpesvirus 1. Journal of Virology 44:249–255
    [Google Scholar]
  2. ALLEN G. P., YEARGAN M. R., TURTINEN L. W., BRYANS J. T., MCCOLLUM W. H. 1983; Molecular epizootiologic studies of equine herpesvirus-1 infections by restriction endonuclease fingerprinting of viral DNA. American Journal of Veterinary Research 44:263–271
    [Google Scholar]
  3. BAUMANN R. P., SULLIVAN D. C, STACZEK J., O’CALLAGHAN D. J. 1986; Genetic relatedness and colinearity of genomes of equine herpesvirus types 1 and 3. Journal of Virology 57:816–825
    [Google Scholar]
  4. BEN-PORAT T., VEACH R. A., IHARA S. 1983; Localization of the regions of homology between the genomes of herpes simplex virus, type 1, and Pseudorabies virus. Virology 127:194–204
    [Google Scholar]
  5. BURROWS R., GOODRIDGE D. 1973 In vivo and in vitro studies of equine rhinopneumonitis virus strains. Proceedings of the Third International Conference on Equine Infectious Diseases306–321 Edited by Bryans J. T., Gerber H. Basel: S. Karger;
    [Google Scholar]
  6. DALZIEL R. G., MARSDEN H. S. 1984; Identification of two herpes simplex virus type 1-induced proteins (21K and 22K) which interact specifically with the a sequence of herpes simplex virus DNA. Journal of General Virology 65:1467–1475
    [Google Scholar]
  7. DAVISON A. J. 1983; DNA sequence of the US component of the varicella-zoster virus genome. EMBO Journal 2:2203–2209
    [Google Scholar]
  8. DAVISON A. J., MCGEOCH D. J. 1986; Evolutionary comparisons of the S segments in the genomes of herpes simplex virus type 1 and varicella-zoster virus. Journal of General Virology 67:597–611
    [Google Scholar]
  9. DAVISON A. J., SCOTT J. E. 1985; DNA sequence of the major inverted repeat in the varicella-zoster virus genome. Journal of General Virology 66:207–220
    [Google Scholar]
  10. DAVISON A. J., SCOTT J. E. 1986a; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  11. DAVISON A. J., SCOTT J. E. 1986b; DNA sequence of the major capsid protein gene of herpes simplex virus type 1. Journal of General Virology 67:2279–2286
    [Google Scholar]
  12. DAVISON A. J., WILKIE N. M. 1983; Location and orientation of homologous sequences in the genomes of five herpesviruses. Journal of General Virology 64:1927–1942
    [Google Scholar]
  13. DRAPER K. G., FRINK R. J., WAGNER E. K. 1982; Detailed characterization of an apparently unspliced β herpes simplex virus type 1 gene mapping in the interior of another. Journal of Virology 43:1123–1128
    [Google Scholar]
  14. ELLIS R. W., KELLER P. M., LOWE R. S., ZIVIN R. A. 1985; Use of a bacterial expression vector to map the varicella-zoster virus major glycoprotein gene, gC. Journal of Virology 53:81–88
    [Google Scholar]
  15. FRAME M. C, MCGEOCH D. J., RIXON F. J., ORR A. C., MARSDEN H. S. 1986; The 10K virion phosphoprotein encoded by gene US9 from herpes simplex virus type 1. Virology 150:321–332
    [Google Scholar]
  16. HENRY B. E-, ROBINSON R. A., DAUENHAUER S. A., ATHERTON S. S., HAYWARD G. S., O’CALLAGHAN D. J. 1981; Structure of the genome of equine herpesvirus type 1. Virology 115:97–114
    [Google Scholar]
  17. KYTE J., DOOLITTLE R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  18. MCGEOCH D. J., DOLAN A., DONALD S., RIXON F. J. 1985; Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. Journal of Molecular Biology 181:1–13
    [Google Scholar]
  19. MCLAUCHLAN J., CLEMENTS J. B. 1983; Organization of the herpes simplex virus type 1 transcription unit encoding two early proteins with molecular weights of 140000 and 40000. Journal of General Virology 64:997–1006
    [Google Scholar]
  20. MACNAB J. 1972; Transformation of sheep cells by simian virus 40. Archiv für die gesamte Virusforschung 37:71–77
    [Google Scholar]
  21. MURCHLE M.-J., MCGEOCH D. J. 1982; DNA sequence analysis of an immediate-early gene region of the herpes simplex virus type 1 genome (map coordinates 0·950 to 0·978). Journal of General Virology 62:1–15
    [Google Scholar]
  22. O’CALLAGHAN D. J., SULLIVAN D. C, BAUMANN R. P., CAUGHMAN G. B., FLOWERS C. C, ROBERTSON A. T., STACZEK J. 1984 Genomes of the equine herpesviruses: molecular structure, regions of homology and DNA sequences associated with transformation. Herpesvirus507–525 Edited by Rapp F. New York: Alan R. Liss;
    [Google Scholar]
  23. PETROVSKIS E. A., POST L. E. 1987; A small open reading frame in Pseudorabies virus and implications for evolutionary relationships between herpesviruses. Virology 159:193–195
    [Google Scholar]
  24. PUSTELL J., KAFATOS F. C. 1982; A high speed, high capacity homology matrix: zooming through SV40 and polyoma. Nucleic Acids Research 10:4765–4782
    [Google Scholar]
  25. QUINN J. P., MCGEOCH D. J. 1985; DNA sequence of the region in the genome of herpes simplex virus type 1 containing the genes for DNA polymerase and the major DNA binding protein. Nucleic Acids Research 13:8143–8163
    [Google Scholar]
  26. RIXON F. J., MCGEOCH D. J. 1984; A 3′ co-terminal family of mRNAs from the herpes simplex virus type 1 short region: two overlapping reading frames encode unrelated polypeptides one of which has a highly reiterated amino acid sequence. Nucleic Acids Research 12:2473–2487
    [Google Scholar]
  27. RIXON F. J., MCGEOCH D. J. 1985; Detailed analysis of the mRNAs mapping in the short unique region of herpes simplex virus type 1. Nucleic Acids Research 13:953–973
    [Google Scholar]
  28. RIXON F., TAYLOR P., DESSELBERGER U. 1984; Rotavirus RNA segments sized by electron microscopy. Journal of General Virology 65:233–239
    [Google Scholar]
  29. RUYECHAN W. T., DAUENHAUER S. A., O’CALLAGHAN D. J. 1982; Electron microscopic study of equine herpesvirus type 1 DNA. Journal of Virology 42:297–300
    [Google Scholar]
  30. SABINE M., ROBERTSON G. R., WHALLEY J. M. 1981; Differentiation of subtypes of equine herpesvirus 1 by restriction endonuclease analyses. Australian Veterinary Journal 57:148–149
    [Google Scholar]
  31. SHIMIZU T., ISHIZAKI R., ISHII S., KAWAKAMI Y., KAJI R., SUGIMURA K., MATUMOTO M. 1959; Isolation of equine abortion virus from natural cases of equine abortion in horse kidney cell culture. Japanese Journal of Experimental Medicine 29:643–649
    [Google Scholar]
  32. STADEN R. 1982; Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Research 10:4731–4751
    [Google Scholar]
  33. STADEN R., MCLACHLAN A. D. 1982; Codon preference and its use in identifying protein coding regions in long DNA sequences. Nucleic Acids Research 10:141–156
    [Google Scholar]
  34. STUDDERT M. J. 1983; Restriction endonuclease DNA fingerprinting of respiratory, foetal and perinatal foal isolates of equine herpesvirus type 1. Archives of Virology 77:249–258
    [Google Scholar]
  35. STUDDERT M. J., SIMPSON T., ROIZMAN B. 1981; Differentiation of respiratory and abortigenic isolates of equine herpesvirus 1 by restriction endonucleases. Science 214:562–564
    [Google Scholar]
  36. TAYLOR P. 1984; A fast homology program for aligning biological sequences. Nucleic Acids Research 12:447–455
    [Google Scholar]
  37. TAYLOR P. 1986; A computer program for translating DNA sequences into protein. Nucleic Acids Research 14:437–441
    [Google Scholar]
  38. WHALLEY J. M., ROBERTSON G. R., DAVISON A. L. 1981; Analysis of the genome of equine herpesvirus type 1: arrangement of cleavage sites for restriction endonucleases EcoRI, BglII and BamHI. Journal of General Virology 57:307–323
    [Google Scholar]
  39. WHITTON J. L., CLEMENTS I. B. 1984; The junctions between the repetitive and the short unique sequences of the herpes simplex virus genome are determined by the polypeptide-coding regions of two spliced immediate-early mRNAs. Journal of General Virology 65:451–466
    [Google Scholar]
  40. WILKIE N. M. 1973; The synthesis and substructure of herpesvirus DNA: the distribution of alkali-labile single strand interruptions in HSV-1 DNA. Journal of General Virology 21:453–467
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-69-7-1575
Loading
/content/journal/jgv/10.1099/0022-1317-69-7-1575
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error