1887

Abstract

Summary

Seven virus-encoded proteins are regularly expressed in Epstein-Barr virus (EBV)-transformed lymphoblastoid (LCL) cell lines: the EBV nuclear antigens EBNA 1 to 6 and the latent membrane protein (LMP). In nasopharyngeal carcinoma (NPC), only EBNA 1 is regularly expressed; LMP is detected in about 50% of the tumours. In Burkitt's lymphoma (BL) tumours, only EBNA 1 is expressed. Also, in BL-derived cell lines that maintain the phenotypic markers characteristic of the tumour (group I), only EBNA 1 is expressed. EBV was rescued by induction or cocultivation from one BL cell line with a restricted group I pattern, and from one NPC tumour, into normal B cells. In the resulting LCLs EBNA 1 to 6 and LMP were expressed. We assessed the level of methylation in the genes encoding EBNA 2 and LMP by restriction fragment analysis using the methylation-sensitive enzymes I and II. These genes were extensively methylated in the group I BL line Rael and the nude mouse-passaged C15 NPC tumour, but were demethylated in the derived LCLs. In the LMP expressing the NPC tumour, but were demethylated in the derived LCLs. In the LMP-expressing coding exons were methylated. The EBNA 1 coding exon was methylated in the Rael line and in NPC, in spite of expression. In contrast, CpG pairs in P were originally hypomethylated and remained so after their transfer to LCLs. The cell phenotype-dependent pattern of EBV gene methylation correlated with the phenotype-dependent pattern of EBNA and LMP expression. The specific patterns of methylation localized to controlling regions ( P and 5′ flanking sequences) also suggest a specific role for methylation in the regulation of EBNA and LMP expression.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-11-2989
1989-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/11/JV0700112989.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-11-2989&mimeType=html&fmt=ahah

References

  1. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. G., Hatfull G., Hudson G. S., Satchwell S. C., Séguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B958 Epstein-Barr virus genome. Nature London: 310207–211
    [Google Scholar]
  2. Bodescot M., Perricaudet M. 1986; Epstein-Barr virus mRNAs produced by alternative splicing. Nucleic Acids Research 14:7103–7114
    [Google Scholar]
  3. Bodescot M., Chambraud B., Farrell P., Perricaudet M. 1984; Spliced RNA from the IR1-U2 region of Epstein-Barr virus: presence of an open reading frame for a repetitive polypeptide. EMBO Journal 3:1913–1917
    [Google Scholar]
  4. Bodescot M., Brison O., Perricaudet M. 1986; An Epstein-Barr virus transcription unit is at least 84 kb long. Nucleic Acids Research 14:2611–2620
    [Google Scholar]
  5. Bodescot M., Perricaudet M., Farrell P. J. 1987; A promoter for the highly spliced EBNA family of RNAsof Epstein-Barr virus. Journal of Virology 61:3424–3430
    [Google Scholar]
  6. Bonnerot CH., Daeron M., Varin N., Amigorena S., Hogarth P. M., Even J., Fridman W. H. 1988; Methylation in the 5′ region of the murine beta FcgammaR gene regulates the expression of Fcgamma receptor. Journal of Immunology 141:1026–1033
    [Google Scholar]
  7. Busson P., Ganem O., Flores P., Mugneret F., Clausse B., Caillou B., Braham K., Wakasugi H., Lipinski M., Tursz T. 1988; Establishment and characterization of three transplantable EBV-containing nasopharyn-geal carcinomas. International Journal of Cancer 42:599–606
    [Google Scholar]
  8. Cedar H. 1988; Minireview: DNA methylation. Cell 53:3–4
    [Google Scholar]
  9. Dillner J., Kallin B., Ehlin-henriksson B., Timar L., Klein G. 1985; Characterization of a second Epstein-Barr virus nuclear antigen associated with the Bam WYH region of EBV DNA. International Journal of Cancer 35:359–366
    [Google Scholar]
  10. Dillner J., Kallin B., Alexander H., Ernberg I., Uno M., Ono Y., Klein G., Lerner R. A. 1986a; An Epstein-Barr virus (EBV)-determined nuclear antigen (EBNA 5) partly encoded by the transformation-associated Bam WYH region of EBV DNA: preferential expression in lymphoblastoid cell lines. Proceedings of the National Academy of SciencesU.S.A. 836641–6645
    [Google Scholar]
  11. Dillner J., Kallin B., Ehlin-Henriksson B., Rymo L., Henle G., Henle W., Klein G. 1986b; The Epstein-Barr virus-determined antigen is composed of at least three different antigens. International Journal of Cancer 37:195–200
    [Google Scholar]
  12. Doerfler W. 1983; DNA methylation and gene activity. Annual Review of Biochemistry 52:93–124
    [Google Scholar]
  13. Ernberg I., Kallin B., Dillner J., Falk K., Ehlin-Henriksson B., Klein G. 1986; Lymphoblastoid Cell linesand Burkitt’s lymphoma-derived cell lines differ in the expression of a second Epstein-Barr virus-encoded nuclear antigen. International Journal of Cancer 38:729–737
    [Google Scholar]
  14. FÅhraeus R., Hu L. F., Ernberg I., Finke J., Rowe M., Klein G., Falk K., Nilsson E., Yadav M., Busson P., Tursz T., Kallin B. 1988; Expression of Epstein-Barr virus proteins in nasopharyngeal carcinoma. International Journal of Cancer 42:329–338
    [Google Scholar]
  15. Feinberg A. P., Vogelstein B. 1983; A technique for radiolabeling DNA restriction nuclease fragments to highspecific activity. Analytical Biochemistry 132:6–13
    [Google Scholar]
  16. Gratama J. W., Oosterveer M. A. P., Zwaan F. E., Lepoutre J., Klein G., Ernberg I. 1988; Eradication of Epstein-Barr virus by allogeneic bone marrow transplantation: implications for sites of viral latency. Proceedings of the National Academy of SciencesU.S.A. 858693–8696
    [Google Scholar]
  17. Hennessy K., Kieff E. 1985; A second nuclear protein is encoded by Epstein-Barr virus in latent infection. Science 227:1238–1240
    [Google Scholar]
  18. Hennessy K., Fennewald S., Hummel M., Cole T., Kieff E. 1984; A membrane protein encoded by Epstein-Barr virus in latent growth-transforming infection. Proceedings of the National Academy of SciencesU.S.A. 817207–7211
    [Google Scholar]
  19. Hennessy K., Fennewald S., Kieff E. 1985; A third nuclear protein in lymphoblasts immortalized by Epstein-Barr virus. Proceedings of the National Academy of SciencesU.S.A. 825944–5948
    [Google Scholar]
  20. Hennessy K., Wang E., Woodmand bushman E., Kieff E. 1986; Definite identification of a member of theEpstein-Barr virus nuclear protein 3 family. Proceedings of the National Academy of SciencesU.S.A. 835693–5697
    [Google Scholar]
  21. Honess R. W., Gompels U. A., Barrell B. G., Craxton M., Cameron K. R., Staden R., Chang Y. -N., Hayward G. S. 1989; Deviations from expected frequencies of CpG dinucleotides in herpesvirus DNAs may be diagnostic of differences in the states of their latent genomes. Journal of General Virology 70:837–855
    [Google Scholar]
  22. Kallin B., Dillner J., Ernberg I., Ehlin-Henriksson B., Rosen A., Henle W., Henle G., Klein G. 1986; .Four virally determined antigens are expressed in Epstein-Barr virus transformed cells. Proceedings of theNational Academy of SciencesU.S.A. 861499–1503
    [Google Scholar]
  23. Kelley D. E., Pollok B. A., Atchison M. L., Perry R. 1988; The coupling between enhancer activity andhypomethylation of kappa immunoglobulin genes is developmental regulated. Molecular and Cellular Biology 8:930–937
    [Google Scholar]
  24. Keshet I., Yisraeli J., Cedar H. 1985; Effect of regional DNA methylation on gene expression. Proceedings of the National Academy of SciencesU.S.A. 822560–2564
    [Google Scholar]
  25. Klein G., Dombos L., Gothoskar B. 1972; Sensitivity of Epstein-Barr virus (EBV) producer and non-producer human lymphoblastoid cell lines to superinfection with EB-virus. International Journal of Cancer 10:44–57
    [Google Scholar]
  26. Lewin N., Åman P., Masucci M. G., Klein E., Klein G., Öberg B., Strander H., Henle W., Henle G. 1987; Characterization of EBV-carrying B cell populations in healthy seropositive individuals with regard to density, release of transforming virus and spontaneous outgrowth. International Journal of Cancer 39:472–476
    [Google Scholar]
  27. Masucci M. G., Contreras-Salazar B., Ragnar E., Falk K., Minarovits J., Ernberg I., Klein G. 1989; 5-Azacytidine up-regulates the expression of EBNA 2‒6 and LMP in an EBNA-1 positive, EBNA 2‒6 andLMP-negative Burkitt’s lymphoma line. Journal of Virology 63:3135–3141
    [Google Scholar]
  28. Petti L., Sample J., Wang F., Kieff E. 1988; A fifth Epstein-Barr virus nuclear protein (EBNA 3C) isexpressed in latently infected growth transformed lymphocytes. Journal of Virology 62:1330–1338
    [Google Scholar]
  29. Reisman D., Sugden B. 1986; Trans-activation of an Epstein-Barr virus (EBV)-transcriptional enhancer by theEBV nuclear antigen-1. Molecular and Cellular Biology 6:3838–3846
    [Google Scholar]
  30. Ricksten A., Kallin B., Alexander H., Dillner J., Fåhraeus R., Klein G., Lerner R., Rymo L. 1988a; The BamHI E region of the Epstein–Barr virus encodes three transformation associated nuclear proteins. Proceedings of the National Academy of SciencesU.S.A. 85995–999
    [Google Scholar]
  31. Ricksten A., Olsson A., Andersson T., Rymo L. 1988b; The 5′ flanking region of the gene for the Epstein-Barr virus-encoded nuclear antigen 2 contains a cell type specific cis-acting regulatory element that activates transcription in transfected B-cells. Nucleic Acids Research 16:8391–8409
    [Google Scholar]
  32. Rowe M., Rowe D. T., Gregory C. D., Young L. S., Farrell P. J., Rupani H., Rickinson A. B. 1987a; Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt’s lymphoma cells. EMBO Journal 6:2743–2751
    [Google Scholar]
  33. Rowe M., Evans H. S., Young L. S., Hennessy K., Kieff E., Rickinson A. B. 1987b; Monoclonal antibodies to the latent membrane protein of Epstein-Barr virus reveal heterogeneity of the protein and inducible expression in virus-transformed cells. Journal of General Virology 68:1575–1586
    [Google Scholar]
  34. Saluz H. P., Peavers I. M., Jiricny J., Jost J. P. 1988; Genomic sequencing and in vivo foot printing of anexpression-specific DNase I-hypersensitive site of avian vitellogenin II promoter reveal a demethylation of a mCpG and a change in specific interactions of proteins with DNA. Proceedings of the National Academy ofSciencesU.S.A. 856697–6700
    [Google Scholar]
  35. Sample J., Hummel M., Braun D., Birkenbach M., Kieff E. 1986; Nucleotide sequences of mRNAs encodingEpstein-Barr virus nuclear proteins: a probable transcriptional initiating site. Proceedings of the NationalAcademy of SciencesU.S.A. 835096–5100
    [Google Scholar]
  36. Speck S. H., Strominger J. L. 1985; Analysis of the transcript encoding the latent Epstein-Barr virus nuclearantigen I. A potentially polycistronic message generated by long-range splicing of several exons. Proceedings of the National Academy of SciencesU.S.A. 828305–8309
    [Google Scholar]
  37. Speck S. H., Strominger J. L. 1989; Transcription of Epstein-Barr virus in latently infected, growth-transformed lymphocytes. Advances in Viral Oncology 8:133–150
    [Google Scholar]
  38. Szyf M., Eliasson L., Mann V., Klein G., Razin A. 1985; Cellular and viral DNA hypomethylation associatedwith induction of Epstein-Barr virus lytic cycle. Proceedings of the National Academy of SciencesU.S.A. 828090–8094
    [Google Scholar]
  39. Toniolo D., Martini G., Migeon B. R., Dono R. 1988; Expression of the G6PD locus on the human Xchromosome is associated with demethylation of three CpG islands within 100 kb of DNA. EMBO Journal 7:401–406
    [Google Scholar]
  40. Wang F., Petti L., Braun D., Seung S., Kieff E. 1987; A bicistronic Epstein-Barr virus mRNA encodes twonuclear proteins in latently infected growth transformed lymphocytes. Journal of Virology 61:945–954
    [Google Scholar]
  41. Watt F., Molloy P. L. 1988; Cytosine methylation prevents binding to DNA of a HeLa cell transcription factorrequired for optimal expression of the adenovirus major late promoter. Genes and Development 2:1136–1143
    [Google Scholar]
  42. Yates J., Warren N., Reisman D., Sugden B. 1984; A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proceedings of the National Academy of SciencesU.S.A. 813806–3810
    [Google Scholar]
  43. Young L. S., Dawson C. W., Clark D., Rupani H., Busson P., Tursz T., Johnson A., Rickinson A. B. 1988; .Epstein-Barr virus gene expression in nasopharyngeal carcinoma. Journal of General Virology 69:1051–1065
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-11-2989
Loading
/content/journal/jgv/10.1099/0022-1317-70-11-2989
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error