1887

Abstract

Summary

Following intraperitoneal or intranasal inoculation of the Syrian hamster with equine herpesvirus type 1 (EHV-1), strain Kentucky D, virus replicated in the liver and lungs reaching a peak at 4 days post-infection (p.i.). By day 6 p.i. virus titres in these organs had reduced and the spleen contained virus-specific cytotoxic cells. This cytotoxicity was mediated by T cells since treatment of effector cells with a monoclonal antibody to hamster T lymphocytes inhibited the effect. An antiviral humoral immune response was present by day 4 when antibodies capable of lysing EHV-1-infected target cells in the presence of complement were detected. The transfer of serum from recovered hamsters into naive recipients 24 h before challenge prevented virus infection, whereas serum transferred 24 h after challenge reduced the titre of virus recovered from target organs. Inoculation of hamsters with monoclonal antibodies directed to glycoproteins 13, 14 and 17/18 of a subtype 1 virus (Army 183) before virus challenge protected hamsters. This hamster model will prove useful for studying the immune response to EHV-1 and evaluating the immunogenicity of individual virus components.

Keyword(s): EHV-1 , glycoproteins and hamster model
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-5-1173
1989-05-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/5/JV0700051173.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-5-1173&mimeType=html&fmt=ahah

References

  1. Allen G. P., Coogle L. D. 1988; Characterization of an equine herpes virus type 1 gene encoding glycoprotein 13 (gp 13) with homology to herpes simplex virus glycoprotein C. Journal of Virology 62:2850–2858
    [Google Scholar]
  2. Allen G. P., Yeargan M. R. 1987; Use of λ gt 11 and monoclonal antibodies to map the genes for the six major glycoproteins of EHV-1. Journal of Virology 61:2454–2461
    [Google Scholar]
  3. Anderson K., Goodpasture E. W. 1942; Infection of newborn Syrian hamsters with the virus of mare abortion. American Journal of Pathology 18:555–559
    [Google Scholar]
  4. Anonymous A. 1988; Horserace Betting Levy Boards Second Veterinary Conference, London 1988. Veterinary Record 122:170–171
    [Google Scholar]
  5. Atherton S., Streilein R. D., Streilein J. W. 1984; Lack of polymorphism for C-type retrovirus sequences in the Syrian hamster. ICSU Short Report 1:128–131
    [Google Scholar]
  6. Babiuk L. A., Wardley R. C., Rouse B. T. 1975; Defense mechanisms against bovine herpesvirus. Relationship of virus-host cell events to susceptibility to antibody complement cell lysis. Infection and Immunity 12:958–963
    [Google Scholar]
  7. Balachandran N., Bacchetti S., Rawls W. E. 1982; Protection against lethal challenge of Balb/c mice by passive transfer of monoclonal antibodies to five glycoproteins of herpes simplex virus type 2. Infection and Immunity 37:1132–1137
    [Google Scholar]
  8. Blacklaws B. A., Nash A. A., Darby G. 1987; Specificity of the immune response of mice to herpes simplex virus glycoproteins B and D constitutively expressed on L cell lines. Journal of General Virology 68:1103–1114
    [Google Scholar]
  9. Bridges C. G., Edington N. 1987; Genetic restriction of cytolysis during equid herpesvirus 1 subtype-2 infection. Clinical and Experimental Immunology 70:276–282
    [Google Scholar]
  10. Bryans J. T. 1976; Immunization of pregnant mares with an inactivated equine herpesvirus 1 vaccine. In Equine Infectious Diseases IVProceedings of the Fourth International Conference on Equine Infectious Diseases83–92 Bryans J. T., Gerber H. Princeton: Veterinary Publications;
    [Google Scholar]
  11. Burrows R. 1968; Rhinopneumonitis virus neutralising antibody levels of British thoroughbred mares. Proceedings of the First International Conference on Equine Infectious Diseases306–321 Bryans J. T., Gerber H. Lexington: Graystone Foundation;
    [Google Scholar]
  12. Burrows R., Goodridge D., Denyer M. S. 1984; Trials of an inactivated equid herpesvirus 1 vaccine: challenge with a subtype-1 virus. Veterinary Record 114:369–374
    [Google Scholar]
  13. Campbell T. M., Studdert M. J. 1983; Equine herpesvirus type-1. Veterinary Bulletin 53:135–147
    [Google Scholar]
  14. Dimock W. W., Edwards P. R. 1936; The differential diagnosis of equine abortion with special reference to a hitherto undescribed form of epizootic abortion of mares. Cornell Veterinarian 26:231–239
    [Google Scholar]
  15. Doll E. R. 1961; Immunization against viral rhinopneumonitis of horses with live virus propagated in hamsters. Journal of the American Veterinary Medicine Association 139:1324–1330
    [Google Scholar]
  16. Doll E. R., Wallace E. 1954; Cultivation of equine abortion and equine influenza viruses on the chorioallantoic membrane of chick embryos. Cornell Veterinarian 44:453–461
    [Google Scholar]
  17. Freshney R. I. 1983; Disaggregation of the tissue and primary culture. In Culture of Animal Cells (A Manual of Basic Technique)99–110 New York: Alan R. Liss;
    [Google Scholar]
  18. Friedman H. M., Cohen G. H., Eisenberg R. J., Seidel C. A., Cines D. B. 1984; Glycoprotein C of herpes simplex virus acts as a receptor for the C3b complement component on infected cells. Nature, London 309:633–635
    [Google Scholar]
  19. Hjorth R. N., Bonde G. M., Pierzchala W. A., Vernon S. K., Wiener F. P., Levner M. H., Lubeck M. D., Hung P. P. 1988; A new hamster model for adenoviral vaccination. Archives of Virology 100:279–283
    [Google Scholar]
  20. Jennings S. R., Lippe P. A., Pauza K. J., Spear P. G., Pereira L., Tevethia S. S. 1987; Kinetics of expression of herpes simplex virus type-1 specific glycoprotein species on the surfaces of infected murine, simian and human cells: flow cytometric analysis. Journal of Virology 61:104–112
    [Google Scholar]
  21. King A. M. Q., Stott E. J., Langer S. J., Young K. Y., Ball L. A., Wertz G. W. 1987; Recombinant vaccinia viruses carrying the N gene of human respiratory syncytial virus: studies of gene expression in cell culture and immune response of mice. Journal of Virology 61:2885–2890
    [Google Scholar]
  22. Kumel G., Kaerner M. C., Levine M., Schroder C. H., Glorioso J. C. 1985; Passive immune protection by herpes simplex virus specific monoclonal antibodies and monoclonal antibody resistant mutants altered in pathogenicity. Journal of Virology 56:930–937
    [Google Scholar]
  23. Lawman M. J. D., Rouse B. T., Courtney R. I., Walker R. D. 1980; Cell mediated immunity against herpes simplex. Induction of cytotoxic T-lymphocytes. Infection and Immunity 27:133–139
    [Google Scholar]
  24. Little S. P., Joffre J. T., Courtney R. J., Schaffer P. A. 1981; A virion-associated glycoprotein essential for the infectivity of herpes simplex type-1. Virology 115:149–160
    [Google Scholar]
  25. Lopez C., O’Reilly R. J. 1977; Cell mediated immune responses in recurrent herpesvirus infections. 1. Lymphocyte proliferation assay. Journal of Immunology 118:895–902
    [Google Scholar]
  26. McGuire K. L., Duncan W. R., Tucker P. W. 1985; Syrian hamster DNA shows limited polymorphism at class Hike loci. Immunogenetics 22:257–268
    [Google Scholar]
  27. McGuire K., Duncan W. R., Tucker P. W. 1986; Structure of a class 1 gene from Syrian hamster. Journal of Immunology 137:366–372
    [Google Scholar]
  28. McNearney T. A., Odell C., Holers V. M., Spear P. G., Atkinson J. P. 1987; Herpes simplex glycoproteins gC-1 and gC-2 bind to the third component of complement and provide protection against complement mediated neutralisation of viral infectivity. Journal of Experimental Medicine 166:1525–1535
    [Google Scholar]
  29. Papp-Vid G., Derbyshire I. B. 1978; The protective antigens of equine herpesvirus type-1. Canadian Journal of Comparative Medicine 42:219–226
    [Google Scholar]
  30. Spiegelberg H. L. 1974; Biological activities of immunoglobulins of different classes and subclasses. Advances in Immunology 19:259–294
    [Google Scholar]
  31. Stein-Streilein J., Witte P. L., Streilein J. W., Guffe J. 1985; Local cellular defences in influenza-infected lungs. Cellular Immunology 95:234–246
    [Google Scholar]
  32. Stokes A., Wardley R. C. 1988; ADCC and complement-dependent lysis as immune mechanisms against EHV-1 infection in the horse. Research in Veterinary Science 44:295–302
    [Google Scholar]
  33. Streilein J. W., Gerboth-Darden A., Phillips J. T. 1984; Primordial MHC function may best be served by monomorphism. Immunology Today 5:87–88
    [Google Scholar]
  34. Studdert M. J. 1983; Restriction endonuclease DNA fingerprinting of respiratory foetal and perinatal foal isolates of EHV-1. Archives of Virology 77:249–258
    [Google Scholar]
  35. Studdert M. J., Kamada M. 1983; Restriction endonuclease fingerprinting of equine herpesvirus types 1 and 3. Abstracts of the 8th International Herpesvirus Workshop, Oxford 198345
    [Google Scholar]
  36. Sullivan V., Smith G. L. 1987; Expression and characterization of herpes simplex virus type 1 (HSV-1) glycoprotein G (gG) by recombinant vaccinia virus: neutralization of HSV-1 with anti-gG antibody. Journal of General Virology 68:2587–2598
    [Google Scholar]
  37. Turtinen L. W., Allen G. P. 1982; Identification of the envelope surface glycoproteins of equine herpesvirus type-1. Journal of General Virology 63:481–485
    [Google Scholar]
  38. Whalley J. M., Robertson G. R., Davison A. J. 1981; Analysis of the genome of equine herpesvirus type 1: arrangement of cleavage sites for restriction endonucleases EcoRI, BglII and BamHI. Journal of General Virology 57:307–323
    [Google Scholar]
  39. Wilks C. R., Coggins L. 1977; Protective immunity in equine herpesvirus type-1 infection of hamsters. Cornell Veterinarian 67:385–103
    [Google Scholar]
  40. Witte P., Stein-Streilein J., Streilein J. W. 1985; Description of phenotypically distinct T-lymphocyte subsets which mediate helper/DTH and cytotoxic functions in the Syrian hamster. Journal of Immunology 134:2908–2915
    [Google Scholar]
  41. Yeargan M. R., Allen G. P., Bryans J. T. 1985; Rapid subtyping of EHV-1 with monoclonal antibodies. Journal of Clinical Microbiology 21:694–697
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-5-1173
Loading
/content/journal/jgv/10.1099/0022-1317-70-5-1173
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error