1887

Abstract

The herpes simplex virus type 1 temperature-sensitive (ts) mutant 1207 does not induce detectable levels of ribonucleotide reductase activity at the non-permissive temperature (NPT, 39.5 °C). The ts lesion prevents the association of the enzyme's large (RR1) and small (RR2) subunits to give an active holoenzyme and maps within the gene specifying RR1. Here, it is shown that the ts mutant phenotype is due to the substitution of an asparagine for the wild-type (wt) serine at RR1 position 961, which is located within a region highly conserved between herpesviral and cellular RR1 subunit polypeptides. This 1207 asparagine is predicted to alter a wt α-helix to a β-strand. We have used synthetic oligopeptides, corresponding to the wt amino acid sequence of the mutation site, and antisera raised against them to determine whether this region is involved in subunit association. Neither the oligopeptides nor the antisera inhibit the enzyme activity, or the reconstituted activity formed by mixing intact RR2 and RR1 subunits present in partially purified extracts of cells infected at the NPT with 1207 or 1222 (an HSV-1 mutant with a lesion in the RR2 subunit), respectively. We infer from these results that the site of the mutation is unlikely to be positioned at the surface of RR1 and hence is probably not directly involved in subunit association. We suggest that the mutation site identifies an important RR1 region whose alteration in 1207 changes the structure of a contact region(s) positioned at the RR1/RR2 interface.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-10-2369
1990-10-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/10/JV0710102369.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-10-2369&mimeType=html&fmt=ahah

References

  1. Atherton E., Gait M. J., Sheppard R. C., Williams B. J. 1979; .The polyamide method of solid phase peptide and oligonucleotide synthesis. Bioorganic Chemistry 8:351–370
    [Google Scholar]
  2. Averett D. R., Lubbers C., Elion G. B., Spector T. 1983; .Ribonucleotidereductase induced by herpes simplex type 1 virus. Characterization of a distinct enzyme. Journal of Biological Chemistry 258:9831–9838
    [Google Scholar]
  3. Bacchetti S., Evelegh M. J., Muirhead B. 1986; .Identification and separation of the two subunits of the herpes simplex virus ribonucleotidereductase. Journal of Virology 57:1177–1181
    [Google Scholar]
  4. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Seguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature; London: 310207–211
    [Google Scholar]
  5. Bassiri R. M., Dvorak J., Utiger R. D. 1979; .Thyrotropinreleasing hormone. In Methods of Hormone Radioimmunoassay pp 46–47 Jaffe B. M., Behrman H. R. Edited by New York: Academic Press;
    [Google Scholar]
  6. Brown S. M., Ritchie D. A., Subak-Sharpe J. H. 1973; Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. Journal of Getteral Virology 18:329–346
    [Google Scholar]
  7. Cameron J. M., Mcdougall I., Marsden H. S., Preston V. G., Ryan D. M., Subak-Sharpe J. H. 1988; Ribonucleotidereductase encoded by herpes simplex virus is a determinant of the pathogenicity of the virus in mice and a valid antiviral target. Journal of General Virology 69:2607–2612
    [Google Scholar]
  8. Caras I. W., Levinson B. B., Fabry M., Williams S. R., Martin D. W. 1985; Cloned mouse ribonucleotidereductase subunit Ml cDNA reveals amino acid sequence homology with Escherichia coliand herpes virus ribonucleotidereductase. Journal of Biological Chemistry 260:7015–7022
    [Google Scholar]
  9. Carlson J., Fuchs J. A., Messing J. 1984; Primary structure of the Escherichia coliribonucleosidediphosphatereductase operon. Proceedings of the National Academy of Sciences U.S.A.: 814294–4297
    [Google Scholar]
  10. Chou P. Y., Fasman G. D. 1978; Prediction of the secondary structure of proteins from their amino acid sequence. Advances in Enzymology 47:54–147
    [Google Scholar]
  11. Cohen E. A., Gaudreau P., Brazeau P., Langelier Y. 1986; Specific inhibition of herpesvirusribonucleotidereductase by a nonapeptide derived from the carboxy terminus of subunit 2. Nature; London: 321441–443
    [Google Scholar]
  12. Creighton T. E. 1983 Proteins Structure and Molecular Properties New York: W. H Freeman and Co;
    [Google Scholar]
  13. Darling A. J., Dutia B. M., Marsden H. S. 1987; Improved method for the measurement of ribonucleotidereductase activity. Journal of Virological Methods 180:281–290
    [Google Scholar]
  14. Darling A. J., Mackay E. M., Ingemarson R., Preston V. G. 1988; Reconstitution of herpes simplex virus type 1 ribonucleotidereductase activity from the large and small subunits. Virus Genes 2:163–176
    [Google Scholar]
  15. Darling A. J., Mackay E. M., Ingemarson R. 1990; Herpes simplex virus encoded ribonucleotidereductase: evidence for the dissociation/reassociationoftheholoenzyme. Virus Genes 3:367–372
    [Google Scholar]
  16. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  17. Dutia B. M. 1983; Ribonucleotidereductase induced by herpes simplex virus has a virus-specified constituent. Journal of General Virology 64:513–521
    [Google Scholar]
  18. Dutia B. M., Frame M. C., Subak-Sharpe J. H., Clark W. N., Marsden H. S. 1986; Specific inhibition of herpesvirusribonucleotidereductase by synthetic peptides. Nature; London: 321439–441
    [Google Scholar]
  19. Frame M. C., Marsden H. S., Dutia B. M. 1985; The ribonucleotidereductase induced by herpes simplex virus type-1 involves minimally a complex of two polypeptides (136K and 38K). Journal of General Virology 66:1581–1587
    [Google Scholar]
  20. Freese E. 1963; Molecular mechanisms of mutation. In Molecular Genetics pp 207–264 Taylor J. H. Edited by New York: Academic Press;
    [Google Scholar]
  21. Garnier J., Osguthorpe D. J., Robson B. 1978; Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. Journal of Molecular Biology 120:97–120
    [Google Scholar]
  22. Gaudreau P., Michaud J., Cohen E. A., Langelier Y., Brazeau P. 1987; Structure-activity studies on synthetic peptides inhibiting herpes simplex virus ribonucleotidereductase. Journal of Biological Chemistry 262:12413–12416
    [Google Scholar]
  23. Goldstein D. J., Weller S. K. 1988a; Herpes simplex virus type 1-induced ribonucleotidereductase activity is dispensable for virus growth and DNA synthesis: isolation and characterization of an ICP6 lacZinsertion mutant. Journal of Virology 62:196–205
    [Google Scholar]
  24. Goldstein D. J., Weller S. K. 1988b; Factor(s) present in herpes simplex virus type 1-infected cells can compensate for the loss of the large subunit of the viral ribonucleotidereductase: characterization of an ICP6 deletion mutant. Virology 166:41–51
    [Google Scholar]
  25. Huang A., Jacobi G., Haj-AFIMAD Y., Bacchetti S. 1988; Expression of the HSV-2 ribonucleotidereductase subunits in adenovirus vectors or stably transformed cells: restoration of enzymatic activity by reassociation of enzyme subunits in the absence of other HSV proteins. Virology 163:462–470
    [Google Scholar]
  26. Ingemarson R., Lankinen H. 1987; The herpes simplex virus type 1 ribonucleotidereductase is a tight complex of the type a2/?2 composed of 40K and 140K proteins, of which the latter shows multiple forms due to proteolysis. Journal of Virology 156:417–422
    [Google Scholar]
  27. Jacobson J. G., Leib D. A., Goldstein D. J., Bogard C. L., Schaffer P. A., Weller S. K., Cohen D. M. 1989; A herpes simplex virus ribonucleotidereductase deletion mutant is defective for productive, acute and reactivatable latent infections of mice and for replication in mouse cells. Virology 173:276–283
    [Google Scholar]
  28. Lankinen H., Telford E., Macdonald D., Marsden H. 1989; The unique N-terminal domain of the large subunit of herpes simplex virus ribonucleotidereductase is preferentially sensitive to proteolysis. Journal of General Virology 70:3159–3169
    [Google Scholar]
  29. Mcclements W., Yamanaka G., Garsky V., Perry H., Bacchetti S., Colonno R., Stein R. B. 1988; Oligopeptides inhibit the ribonucleotidereductase of herpes simplex virus by causing subunit separation. Virology 162:270–273
    [Google Scholar]
  30. Mcgeoch D. J., Dolan A., Donald S., Rixon F. J. 1985; Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. Journal of Molecular Biology 181:1–13
    [Google Scholar]
  31. Mcgeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., Mcnab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  32. Mclauchlan J., Clements J. B. 1983a; DNA sequence homology between two co-linear loci on the HSV genome which have different transforming abilities. EMBO Journal 2:1953–1961
    [Google Scholar]
  33. Mclauchlan J., Clements J. B. 1983b; Organization of the herpes simplex virus type 1 transcription unit encoding two early proteins with molecular weights of 140000 and 40000. Journal of General Virology 64:997–1006
    [Google Scholar]
  34. Macpherson I., Stoker M. 1962; Polyoma transformation of hamster cell clones -an investigation of genetic factors affecting cell competence. Virology 16:147–151
    [Google Scholar]
  35. Nikas I. 1989 Herpes simplex virus ribonucleotidereductase: structural features and transcriptional regulation Ph.D thesis University of Glasgow:
    [Google Scholar]
  36. Nikas I., Mclauchlan J., Davison A. J., Taylor W. R., Clements J. B. 1986; Structural features of ribonucleotidereductase. Proteins: Structure, Function and Genetics 1:376–384
    [Google Scholar]
  37. Nilsson O., Aberg A., Lundqvist T., Sjoberg B. -M. 1988; Nucleotide sequence of the gene coding for the large subunit of ribonucleotidereductase of Escherichia coli.Correction. Nucleic Acids Research 16:4174
    [Google Scholar]
  38. Preston V. G., Palfreyman J. W., Dutia B. M. 1984; Identification of a herpes simplex virus type 1 polypeptide which is a component of the virus-induced ribonucleotidereductase. Journal of General Virology 65:1457–1466
    [Google Scholar]
  39. Preston V. G., Darling A. J., Mcdougall I. M. 1988; The herpes simplex virus type 1 temperature-sensitive mutant ts 1222 has a single base pair deletion in the small subunit of ribonucleotidereductase. Virology 167:458–467
    [Google Scholar]
  40. Sanger F., Coulson A. R., Barrell B. G., Smith A. J. H. 1980; Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. Journal of Molecular Biology 143:161–178
    [Google Scholar]
  41. Sheppard R. C. 1983; Continuous flow methods in organic synthesis. Chemistry in Britain 19:402–413
    [Google Scholar]
  42. Standart N. M., Bray S. J., George E. L., Hunt T., Ruderman J. V. 1985; The small subunit of ribonucleotidereductase is encoded by one of the most abundant translationally regulated maternal mRNAs in clam and sea urchin eggs. Cell Biology 100:1968–1976
    [Google Scholar]
  43. Swain M. A., Galloway D. A. 1986; Herpes simplex virus specifies two subunits of ribonucleotidereductase encoded by 3′ coterminal transcripts. Journal of Virology 57:802–808
    [Google Scholar]
  44. Taylor P. 1984; A fast homology program for aligning biological sequences. Nucleic Acids Research 12:447–455
    [Google Scholar]
  45. Taylor P. 1986; A computer program for translating DNA sequences into protein. Nucleic Acids Research 14:437–441
    [Google Scholar]
  46. Taylor W. R. 1986; The classification of amino acid conservation. Journal of Theoretical Biology 119:205–218
    [Google Scholar]
  47. Telford E., Owsianka A., Marsden H. 1990; Stability of the herpesvirusribonucleotidereductase-inhibiting nonapeptide YAGAVVNDL in extracts of HSV-l-infected cells. Antiviral Chemistry and Chemotherapy in press
    [Google Scholar]
  48. Thelander L., Berg P. 1986; Isolation and characterisation of expressible cDNA clones encoding the M1 and M2 subunits of mouse ribonucleotidereductase. Molecular and Cellular Biology 6:3443–3442
    [Google Scholar]
  49. Wymer J. P., Chung T. D., Chang Y. -N, Hayward G. S., Aurelian L. 1989; Identification of immediate-early-type cis-response elements in the promoter for the ribonucleotidereductase large subunit from herpes simplex virus type 2. Journal of Virology 63:2773–2784
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-10-2369
Loading
/content/journal/jgv/10.1099/0022-1317-71-10-2369
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error