1887

Abstract

The complete nucleotide sequence is presented of the 2·67 kbp HI-RV portion of the the HI 10 fragment of the pseudorabies virus (PRV) genome (strain Ka) containing sequences upstream of the previously reported protein kinase gene, and completing the sequence of this 4008 bp fragment. It is predicted to contain a gene designated RSp40, homologous to gene US1 of herpes simplex virus type 1 (HSV-1), with the potential to encode a protein of 364 amino acids. Analysis of PRV mRNA synthesized in the presence and absence of cycloheximide indicated that, in contrast to its HSV-1 homologue, the PRV gene RSp40 does not specify an immediate-early mRNA. Between the RSp40 gene and the protein kinase gene are two reiterated sequences: one containing 11 tandem copies of a 35 nucleotide sequence and the other containing nine tandem copies of a 10 nucleotide sequence. The HI 10 and the HI 12 fragments of PRV contain the junctions between the short unique (U) and short repeat (R) regions of the PRV genome. The nucleotide sequence of that portion of the HI 12 fragment containing U sequences was determined so that, by comparison with the nucleotide sequence of the HI 10 fragment, the junction between the U and R regions could be defined. In HI 10 this was found to be at a point between the two reiterated sequences (which are in the R region) and the protein kinase gene (which is in the U region). The organization of this region of the PRV genome is compared to that of other alphaherpesviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-10-2433
1990-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/10/JV0710102433.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-10-2433&mimeType=html&fmt=ahah

References

  1. Ackerman M., Sarmiento M., Roizman B. 1985; Application of antibody to synthetic peptides for characteri zation of the intact and truncated α22 protein specified by herpes simplex virus 1 and the R325 α22- deletion mutant. Journal of Virology 56:207–215
    [Google Scholar]
  2. Aviv H., Leder P. 1972; Purification of biologically active globin raRNA by chromatography on oligothymidylic acid-cellulose. Proceedings of the National Academy of Sciences U.S.A.: 691408–1412
    [Google Scholar]
  3. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Séguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature; London: 310207–211
    [Google Scholar]
  4. Ben-Porat T., Deatly A., Veach R. A., Blankenship M. L. 1984; Equalization of the inverted repeat sequences of the pseudorabies virus genome by intermolecular recombination. Virology 132:303–314
    [Google Scholar]
  5. Biggin M. D., Gibson T. J., Hong G. F. 1983; Buffer gradient gels and 35 S label as an aid to rapid DNA sequence determination. Proceedings of the National Academy of Sciences U.S.A: 803963–3965
    [Google Scholar]
  6. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchison C. A., Kouzarides T., Martignetti J. A., Preddie E., Satchwell S. C., Tomlinson P., Weston K. M., Barrell B. G. 1990; Analysis of the protein coding content of human cytomegalovirus strain AD 16. Current Topics in Microbiology and Immunology 154:125–169
    [Google Scholar]
  7. Cheung A. 1989a; DNA nucleotide sequence analysis of the immediate-early gene of pseudorabies virus. Nucleic Acids Research 17:4637–4646
    [Google Scholar]
  8. Cheung A. 1989b; Detection of pseudorabies virus transcripts in trigeminal ganglia of latently infected swine. Journal of Virology 63:2908–2913
    [Google Scholar]
  9. Chomczynski P., Sacchi N. 1987; Single-step method of RNA isolation by guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162:156–159
    [Google Scholar]
  10. Cullinane A. A., Rixon F. J., Davison A. J. 1988; Characterization of the genome of equine herpesvirus 1 subtype 2. Journal of General Virology 69:1575–1590
    [Google Scholar]
  11. Davison A. J. 1983; DNA sequence of the Us component of the varicella-zoster virus genome. EMBO Journal 2:2203–2209
    [Google Scholar]
  12. Davison A. J., McGeoch D. J. 1986; Evolutionary comparisons of the S segments in the genomes of herpes simplex virus type 1 and varicella-zoster virus. Journal of General Virology 67:597–611
    [Google Scholar]
  13. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  14. Davison A. J., Taylor P. 1987; Genetic relations between varicella-zoster virus and Epstein-Barr virus. Journal of General Virology 68:1067–1079
    [Google Scholar]
  15. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  16. Fickett J. 1982; Recognition of protein coding regions in DNA sequences. Nucleic Acids Research 10:5303–5318
    [Google Scholar]
  17. Goldberg D. A. 1980; Isolation and partial characterization of the Drosophila alcohol dehydrogenase gene. Proceedings of the National Academy of Sciences U.S.A.: 775794–5798
    [Google Scholar]
  18. Gribskov M., Devereux J., Burgess R. R. 1984; The codon preference plot: graphic analysis of protein coding sequences and prediction of gene expression. Nucleic Acids Research 12:539–549
    [Google Scholar]
  19. Hattori M., Sakaki Y. 1986; Dideoxy sequencing method using denatured plasmid templates. Analytical Biochemistry 152:232–238
    [Google Scholar]
  20. Henikoff S. 1984; Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359
    [Google Scholar]
  21. Honess R. W. 1984; Herpes simplex and ‘the herpes complex’: diverse observations and a unifying hypothesis. Journal of General Virology 65:2077–2107
    [Google Scholar]
  22. Honess R. W., Roizman B. 1974; Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. Journal of Virology 14:8–19
    [Google Scholar]
  23. Ihara S., Feldman L., Watanabe S., Ben-Porat T. 1983; Characterization of the immediate-early functions of pseudorabies virus. Virology 131:437–454
    [Google Scholar]
  24. Kaplan A. S., Vatter A. E. 1959; A comparison of herpes simplex and pseudorabies virus. Virology 7:394–407
    [Google Scholar]
  25. Lomniczi B., Watanabe S., Ben-Porat T., Kaplan A. S. 1984; Genetic basis of the neurovirulence of pseudorabies virus. Journal of Virology 52:198–205
    [Google Scholar]
  26. McGeoch D. J., Dolan A., Donald S., Rixon F. J. 1985; Sequence determination and genetic content of the short unique region of the genome of herpes simplex virus type 1. Journal of Molecular Biology 181:1–13
    [Google Scholar]
  27. McGeoch D. J., Dolan A., Donald S., Brauer D. K. 1986; Complete DNA sequence of the short repeat region in the genome of herpes simplex virus type 1. Nucleic Acids Research 14:1727–1745
    [Google Scholar]
  28. McGeoch D. J., Moss H. W. M., McNab D., Frame M. C. 1987; DNA sequence and genetic content of the Hindlll l region in the short unique component of the herpes simplex virus type 2 genome: identification of the gene encoding glycoprotein G, and evolutionary comparisons. Journal of General Virology 68:19–38
    [Google Scholar]
  29. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  30. Mettenleiter T. C., Lomniczi B., Sugg N., Schreurs C., Ben-Porat T. 1988; Host cell-specific growth advantage of pseudorabies virus with a deletion in the genome sequences encoding a structural glycoprotein. Journal of Virology 62:12–19
    [Google Scholar]
  31. Petrovskis E. A., Post L. E. 1987; A small open reading frame in pseudorabies virus and implications for evolutionary relationships between herpesviruses. Virology 159:193–195
    [Google Scholar]
  32. Petrovskis E. A., Timmins J. G., Armentrout M. A., Marchioli C. C., Yancey R. J., Post L. E. 1986a; DNA sequence of the gene for the pseudorabies virus gp50, a glycoprotein without N- linked glycosylation. Journal of Virology 59:216–223
    [Google Scholar]
  33. Petrovskis E. A., Timmins J. G., Post L. E. 1986b; Use of Agtll to isolate genes for two pseudorabies virus glycoproteins with homology to herpes simplex virus and varicella-zoster virus glycoproteins. Journal of Virology 60:185–193
    [Google Scholar]
  34. Purves F. C., Katan M., Stevely W. S., Leader D. P. 1986; Characteristics of the induction of a new protein kinase in cells infected with herpesviruses. Journal of General Virology 67:1049–1057
    [Google Scholar]
  35. Rea J., Timmins J. G., Long G. W., Post L. E. 1985; Mapping and sequence of the gene for the pseudorabies glycoprotein which accumulates in the medium of infected cells. Journal of Virology 54:21–29
    [Google Scholar]
  36. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  37. Rixon F. J., Ben-Porat T. 1979; Structural evolution of the DNA of pseudorabies-defective virus particles. Virology 97:151–163
    [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences U.S.A.: 745463–5467
    [Google Scholar]
  39. Sears A. E., Halliburton I. W., Meignier B., Silver S., Roizman B. 1985; Herpes simplex virus 1 mutant deleted in the α22 gene: growth and gene expression in permissive and restrictive cells and establishment of latency in mice. Journal of Virology 55:338–348
    [Google Scholar]
  40. Simon A., Mettenleiter T. C., Rziha H.-J. 1989; Pseudorabies virus displays variable numbers of a repeat unit adjacent to the 3ʹ end of the glycoprotein gll gene. Journal of General Virology 70:1239–1246
    [Google Scholar]
  41. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  42. Stow N. D. 1985; Mutagenesis of a herpes simplex virus origin of DNA replication and its effect on viral interference. Journal of General Virology 66:31–42
    [Google Scholar]
  43. Umene K. 1989; Short duplicated sequence indicative of the recombinogenicity of the junction between a unique and an inverted repeat sequence in the S component of the herpes simplex virus type 1 genome. Journal of Virology 63:1877–1883
    [Google Scholar]
  44. Van Zljl M., Van Der Gulden H., De Wind N., Glelkens A., Berns A. 1990; Identification of two genes in the unique short region of pseudorabies virus; comparison with herpes simplex virus and varicella-zoster virus. Journal of General Virology 71:1747–1755
    [Google Scholar]
  45. Watson R. J., Clements J. B. 1980; A herpes simplex virus function continuously required for early and late virus RNA synthesis. Nature; London: 285329–330
    [Google Scholar]
  46. Weston K., Barrell B. G. 1986; Sequence of the short unique region, short repeats, and part of the long repeats of human cytomegalovirus. Journal of Molecular Biology 192:177–208
    [Google Scholar]
  47. Whitton J. L., Clements J. B. 1984; The junctions between the repetitive and the short unique sequences of the herpes simplex virus genome are determined by the polypeptide-coding regions of two spliced immediate-early mRNAs. Journal of General Virology 65:451–466
    [Google Scholar]
  48. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved Ml3 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  49. Zhang G., Stevens R., Leader D. P. 1990; The protein kinase encoded in the short unique region of pseudorabies virus: description of the gene and identification of its product in virions and in infected cells. Journal of General Virology 71:1757–1765
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-10-2433
Loading
/content/journal/jgv/10.1099/0022-1317-71-10-2433
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error