1887

Abstract

Four antigenic sites of the E2 glycoprotein of transmissible gastroenteritis virus were defined by competitive radioimmunoassays of monoclonal antibodies (MAbs). Here, we describe the localization of these sites by testing the antigenicity of protein fragments and prokaryotic expression products of E2 gene fragments, and by sequencing of MAb-resistant () mutants. Partial proteolysis of purified E2 protein allowed the isolation of a 28K fragment recognized by both site A- and site C-specific MAbs. An antiserum against this fragment bound to a synthetic peptide containing residues 1 to 18 and to an expression product containing residues 1 to 325. The same expression product was recognized by site C-specific MAbs. These data indicate that residues within the sequence 1 to 325 contribute to site C and possibly also to site A. Sequencing of mutants that escaped neutralization by site A-specific MAbs indicated that residues 538 and 543 also belong to site A. The binding of site-specific MAbs to expression products led directly to the localization of sites B and D, between residues 1 to 325 and 379 to 529, respectively. The first 37 % of the polypeptide chain of E2 appears to be more immunogenic than the rest of the sequence.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-2-271
1990-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/2/JV0710020271.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-2-271&mimeType=html&fmt=ahah

References

  1. Bordier C. 1981; Phase separation of integral membrane proteins in Triton X-114 solution. Journal of Biological Chemistry 256:1604–1607
    [Google Scholar]
  2. Brian D. A., Dennis D. E., Guy J. S. 1980; Genome of porcine transmissible gastroenteritis virus. Journal of Virology 34:410–415
    [Google Scholar]
  3. Bullido M. J., Correa I., Jiménez G., Suñé C., Gebauer F., Enjuanes L. 1989; Induction of transmissible gastroenteritis coronavirus-neutralizing antibodies in vitroby virus-specific T helper cell hybridomas. Journal of General Virology 70:659
    [Google Scholar]
  4. Callebaut P., Correa I., Pensaert M., Jiménez G., Enjuanes L. 1988; Antigenic differentiation between transmissible gastroenteritis virus of swine and a related porcine respiratory coronavirus. Journal of General Virology 69:1725–1730
    [Google Scholar]
  5. Correa I., Jiménez G., Suñé C., Bullido M. J., Enjuanes L. 1988; Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus. Virus Research 10:77–94
    [Google Scholar]
  6. Correas I., Speicher D. W., Marchesi V. T. 1986; Structure of the spectrin-actin binding site of erythrocyte protein 4.1*. Journal of Biological Chemistry 261:13362–13366
    [Google Scholar]
  7. Davis L. G., Dibner M. D., Battey J. F. 1986 Basic Methods In Molecular Biology New York: Elsevier;
    [Google Scholar]
  8. De Groot R. J., Luytjes W., Horzinek M. C., Van Der Zeijst B. A. M., Spaan W. J. M., Lenstra J. A. 1987; Evidence for a coiled-coil structure in the spike proteins of coronaviruses. Journal of Molecular Biology 196:963–966
    [Google Scholar]
  9. Efstratiadis A., Kafatos F. C., Maxam A. M., Maniatis T. 1976; Enzymatic in vitrosynthesis of globin genes. Cell 7:279–288
    [Google Scholar]
  10. Garwes D. J., Lucas M. H., Higgins D. A., Pike B. V., Cartwright S. F. 1978; Antigenicity of structural components from porcine transmissible gastroenteritis virus. Veterinary Microbiology 3:179–190
    [Google Scholar]
  11. Geysen H. M., Meloen R. H., Barteling S. J. 1984; Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proceedings of the National Academy of Sciences U.S.A.: 813998–4002
    [Google Scholar]
  12. Greenwood F. C., Hunter W. M., Glover J. W. 1963; The preparation of 1MITabelled human growth hormone of high specific radioactivity. Biochemical Journal 89:114–123
    [Google Scholar]
  13. Hu S., Bruszewski J., Smalling R., Browne J. K. 1987; Studies of a TGEV spike protein GP195 expressed in E. coliand by a TGE- vaccinia virus recombinant. In Immunobiology of Proteins and Peptides. II. Viral and Bacterial Antigens pp 63–82 Atassi M. Z., Bachrach H. L. Edited by New York: Plenum Press;
    [Google Scholar]
  14. Jacobs L., De Groot R. J., Van Der Zeijst B. A. M., Horzinek M. C., Spaan W. 1987; The nucleotide sequence of the peplomer gene of porcine transmissible gastroenteritis virus (TGEV): comparison with the sequence of the peplomer protein of feline infectious peritonitis virus (FIPV). Virus Research 8:363–371
    [Google Scholar]
  15. Jiménez G., Correa I., Melgosa M. P., Bullido M. J., Enjuanes L. 1986; Critical epitopes in transmissible gastroenteritis virus neutralization. Journal of Virology 60:131–139
    [Google Scholar]
  16. Kapke P. A., Brian D. A. 1986; Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virology 151:41–49
    [Google Scholar]
  17. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  18. Laude H., Rasschaert D., Huet J.-C. 1987; Sequence and N- terminal processing of the transmembrane protein El of the coronavirus transmissible gastroenteritis virus. Journal of General Virology 68:1687–1693
    [Google Scholar]
  19. Lenstra J. A., Kusters J. G., Koch G., Van Der Zeijst B. A. M. 1989; Antigenicity of the peplomer protein of infectious bronchitis virus. Molecular Immunology 26:7–15
    [Google Scholar]
  20. Mcclurkin A. W., Norman J. O. 1966; Studies on transmissible gastroenteritis of swine. II. Selected characteristics of a cytopatho- genic virus common to five isolates from transmissible gastroenteritis. Canadian Journal of Comparative Veterinary Sciences 30:190–198
    [Google Scholar]
  21. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Parry N. R., Barnett P. V., Ouldridge E. J., Rowlands D. J., Brown F. 1989; Neutralizing epitopes of type O foot-and-mouth disease virus. II. Mapping three conformational sites with synthetic peptide reagents. Journal of General Virology 70:1493–1503
    [Google Scholar]
  23. Rasschaert D., Laude H. 1987; The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus. Journal of General Virology 68:1883–1890
    [Google Scholar]
  24. Rasschaert D., Gelfi J., Laude H. 1987; Enteric coronavirus TGEV: partial sequence of the genomic RNA, its organization and expression. Biochimie 69:591–600
    [Google Scholar]
  25. Ricard C. S., Sturman L. S. 1985; Isolation of the subunits of the coronavirus envelope glycoprotein E2 by hydroxyapatite high performance liquid chromatography. Journal of Chromatography 326:191–197
    [Google Scholar]
  26. Saif L. J., Bohl E. H. 1986; Transmissible gastroenteritis. In Diseases of Swine6th edn. pp 255–274 Leman A. D., Straw B., Glock R. D., Mengeling W. L., Penny R. H. C., Scholl E. Edited by Ames: Iowa State University Press;
    [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences U.S.A.: 745463–5467
    [Google Scholar]
  28. Sanz A., Garcia-Barreno B., Nogal M. L., Viñuela E., Enjuanes L. 1985; Monoclonal antibodies specific for African swine fever virus proteins. Journal of Virology 54:199–206
    [Google Scholar]
  29. Siddell S., Wege H., Ter Meulen V. 1983; The biology of coronaviruses. Journal of General Virology 64:761–776
    [Google Scholar]
  30. Stanley K. K., Luzio J. P. 1984; Construction of a new family of high efficiency bacterial expression vectors: identification of cDNA clones coding for human liver proteins. EMBO Journal 3:1429–1434
    [Google Scholar]
  31. Sturman L. S., Holmes K. V. 1983; The molecular biology of coronaviruses. Advances in Virus Research 28:35–111
    [Google Scholar]
  32. Thomas A. A. M., Woortmeijer R, Puijk W., Barteling S. J. 1988; Antigenic sites of foot-and-mouth disease virus type A10. Journal of Virology 62:2782–2789
    [Google Scholar]
  33. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences U.S.A.: 764350–4354
    [Google Scholar]
  34. Villanueva N., Dávila M., Ortín J., Domingo E. 1983; . Molecular cloning of cDNA from foot-and-mouth disease virus 23:185–194
    [Google Scholar]
  35. Zimmern D., Kaesberg P. 1978; 3ʹ-Terminal nucleotide sequence of encephalomyocarditis virus RNA determined by reverse transcriptase and chain-terminating inhibitors. Proceedings of the National Academy of Sciences U.S.A.: 754257–4261
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-2-271
Loading
/content/journal/jgv/10.1099/0022-1317-71-2-271
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error