1887

Abstract

Overlapping fragments of the gene encoding glycoprotein gl of pseudorabies virus (PRV; herpesvirus suis 1) were expressed in bacteria. Using the fusion proteins and a panel of monoclonal antibodies (MAbs) against gI as well as swine sera we found that the N-terminal part of gI (residues 33 to approximately 100) contains a highly antigenic and immunogenic domain. Transfer of antibodies binding to this region as well as vaccination with fusion proteins containing the N terminus of gI are able to confer protection to mice against a lethal challenge of virus. The results show that gI, which is non-essential for virus replication in tissue culture, can induce neutralizing and protective antibodies. The potential suitability of fusion proteins encompassing N-terminal parts of gI as diagnostic tools is demonstrated.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-5-1141
1990-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/5/JV0710051141.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-5-1141&mimeType=html&fmt=ahah

References

  1. Babiuk L. A., L’Italien J., Van Drunen Littel-Van Den Hurk S., Zamb T., Lawman M. J. P., Hughes G., Gifford G. A. 1987; Protection of cattle from bovine herpesvirus type 1 (BHV-1) infection by immunization with individual viral glycoproteins. Virology 159:57–66
    [Google Scholar]
  2. Balachandran N., Bacchetti S., Rawls W. E. 1982; Protection against lethal challenge of BALB/c mice by passive transfer of monoclonal antibodies to five glycoproteins of herpes simplex virus type 2. Infection and Immunity 37:1132–1137
    [Google Scholar]
  3. Ben-Porat T., Demarchi J. M., Lomniczi B., Kaplan A. S. 1986; Role of glycoproteins of pseudorabies virus in eliciting neutralizing antibodies. Virology 154:325–334
    [Google Scholar]
  4. Cohen G. H., Dietzschold B., Poncedeleon M., Long D., Golub E., Varrichio A., Pereira L., Eisenberg R. J. 1984; Localization and synthesis of an antigenic determinant of herpes simplex virus glycoprotein D that stimulates the production of neutralizing antibody. Journal of Virology 49:102–108
    [Google Scholar]
  5. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  6. Dix R. D., Pereira L., Baringer J. R. 1981; Use of monoclonal antibody directed against herpes simplex virus glycoproteins to protect mice against acute virus-induced neurological disease. Infection and Immunity 34:192–199
    [Google Scholar]
  7. Dretzen G., Bellard M., Sassone-Corsi P., Chambon P. 1981; A reliable method for the recovery of DNA fragments from agarose and acrylamide gels. Analytical Biochemistry 112:295–298
    [Google Scholar]
  8. Edson C. M., Hosler B. A., Respess R. A., Waters D. J., Thorley-Lawson D. 1985; Cross-reactivity between herpes simplex virus glycoprotein B and a 63,000-dalton varicela-zoster virus envelope glycoprotein. Journal of Virology 56:333–336
    [Google Scholar]
  9. Eloit M., Fargeaud D., L’Haridon R., Toma B. 1988; Identification of the pseudorabies virus glycoprotein gp50 as a major target of neutralizing antibodies. Archives of Virology 99:45–56
    [Google Scholar]
  10. Eloit M., Fargeaud D., Vannier P., Toma B. 1989; Development of an ELISA to differentiate between animals either vaccinated with or infected by Aujeszky's disease virus. Veterinary Record 124:91–94
    [Google Scholar]
  11. Fuller A. O., Santos R. E., Spear P. G. 1989; Neutralizing antibodies specific for glycoprotein gH of herpes simplex virus permit viral attachment to cells but prevent penetration. Journal of Virology 63:3435–3443
    [Google Scholar]
  12. Gielkens A. L. J., Berns A. J. M. 1982; Differentiation of Aujeszky’s disease virus strains of different virulence by restriction endonuclease analysis of the viral DNAs. Current Topics in Veterinary Medicine and Animal Science 17:3–13
    [Google Scholar]
  13. Gielkens A. L. J., Van Oirschot J. T., Berns A. J. M. 1985; Genome differences among field isolates and vaccine strains of pseudorabies virus. Journal of General Virology 66:69–82
    [Google Scholar]
  14. Glorioso J., Schröder C. H., Kümel G., Szczesiul M., Levine M. 1984; Immunogenicity of herpes simplex virus glycoproteins gC and gB and their role in protective immunity. Journal of Virology 50:805–812
    [Google Scholar]
  15. Guo P., Goebel S., Davies S., Perkus M. E., Languet B., Desmettre P., Allen G., Paoletti E. 1989; Expression in recombinant vaccinia virus of the equine herpesvirus 1 gene encoding glycoprotein gpl3 and protection of immunized animals. Journal of Virology 63:4189–4198
    [Google Scholar]
  16. Gustafson D. P. 1975; Pseudorabies virus. In Diseases of Swine pp 391–410 Dunne H. W., Leman A. D. Edited by Ames: Iowa State Press;
    [Google Scholar]
  17. Hampl H., Ben-Porat T., Ehrlicher L., Habermehl K.-O., Kaplan A. S. 1984; Characterization of the envelope proteins of pseudorabies virus. Journal of Virology 52:583–590
    [Google Scholar]
  18. Hanahan D. 1983; Studies on transformation of Escherichia coliwith plasmids. Journal of Molecular Biology 166:557–580
    [Google Scholar]
  19. Hattori M., Sakaki Y. 1986; Dideoxy sequencing method using denatured plasmid templates. Analytical Biochemistry 152:232–238
    [Google Scholar]
  20. Herrmann S. C., Heppner B., Ludwig H. 1984; Pseudorabies viruses from clinical outbreaks and latent infections grouped into four major genome types. Current Topics in Veterninary Medicine and Animal Science 27:387–401
    [Google Scholar]
  21. Ishii H., Kobayashi Y., Kuroki M., Kodama Y. 1988; Protection of mice from lethal infection with Aujeszky’s disease virus by immunization with purified gVI. Archives of Virology 69:1411–1414
    [Google Scholar]
  22. Kit S. 1989; Safety and efficacy of genetically engineered Aujeszky’s disease vaccines. In Vaccination and Control of Aujeszky’s Disease 49 pp 45–55 Van Oirschot J. T. Edited by Dordrecht: Kluwer Academic Publications;
    [Google Scholar]
  23. Kit S., Sheppard M., Ichimuri H., Kit M. 1987; Second- generation psuedorabies virus vaccine with deletions in thymidine kinase and glycoprotein genes. American Journal of Veterinary Research 48:780–793
    [Google Scholar]
  24. Kost T. A., Jones E. V., Smith K. M., Reed A. P., Brown A. L., Miller T. J. 1989; Biological evaluation of glycoproteins mapping to two distinct mRNAs within the BamHlfragment 7 of pseudorabies virus: expression of the coding regions by vaccinia virus. Virology 171:365–376
    [Google Scholar]
  25. Kousoulas K. G., Huo B., Pereira L. 1988; Antibody-resistant mutations in cross-reactive and type-specific epitopes of herpes simplex virus 1 glycoprotein B map in separate domains. Virology 166:423–431
    [Google Scholar]
  26. Kousoulas K., Arsenakis M., Pereira L. 1989; A subset of type- specific epitopes map in the amino terminus of herpes simplex virus type 1 glycoprotein B. Journal of General Virology 70:735–741
    [Google Scholar]
  27. Kümel G., Kaerner H. C., Levine M., Schröder C. H., Glorioso J. 1985; Passive immune protection by herpes simplex virus-specific monoclonal antibodies and monoclonal antibody- resistant mutants altered in pathogenicity. Journal of Virology 56:930–937
    [Google Scholar]
  28. Ladin B. F., Ihara S., Hampl H., Ben-Porat T. 1982; Pathway of assembly of herpesvirus capsids: an analysis using DNA+ temperature-sensitive mutants of pseudorabies virus. Virology 116:544–561
    [Google Scholar]
  29. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  30. Lomniczi B., Blankenship M. L., Ben-Porat T. 1984; Deletions in the genomes of pseudorabies virus vaccine strains and existence of four isomers of the genomes. Journal of Virology 49:970–979
    [Google Scholar]
  31. Lomniczi B., Watanabe S., Ben-Porat T., Kaplan A. S. 1987; Genome location and identification of functions defective in the Bartha vaccine strain of pseudorabies virus. Journal of Virology 61:796–801
    [Google Scholar]
  32. Lukàcs N., Thiel H.-J., Mettenleiter T. C., Rziha H.-J. 1985; Demonstration of three major species of pseudorabies virus glycoproteins and identification of a disulfide-linked glycoprotein complex. Journal of Virology 53:166–173
    [Google Scholar]
  33. Lussenhop N. O., Goertz R., Wabuke-Bunoti M., Gehrz R., Kari B. 1988; Epitope analysis of human cytomegalovirus glycoprotein complexes using murine monoclonal antibodies. Virology 164:362–372
    [Google Scholar]
  34. McGinley M. J., Platt K. B. 1988; Studies on the ability of a 98- kilodalton pseudorabies virus diagnostic antigen to detect latent infections induced by low-dose exposure to the virus. American Journal of Veterinary Research 49:1489–1493
    [Google Scholar]
  35. Maniatis T., Fritsch E. F., Sambrook J. Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Marchioli C.C, Wardley R. C., Thomsen D. R., Post L. E. 1987; A vaccine strain of pseudorabies virus with deletions in the thymidine kinase and glycoprotein gX genes. American Journal of Veterinary Research 48:1577–1583
    [Google Scholar]
  37. Marchioli C. C., Yancey R. J., Timmins J. G., Post L. E., Young B. R., Povendo D. A. 1988; Protection of mice and swine from pseudorabies virus-induced mortality by administration of pseudo-rabies virus-specific mouse monoclonal antibodies. American Journal of Veterinary Research 49:860–864
    [Google Scholar]
  38. Mettenleiter T. C., Lukàcs N., Rziha H.-J. 1985a; Mapping of the structural gene of pseudorabies virus glycoprotein A and identification of two non-glycosylated precursor polypeptides. Journal of Virology 53:52–57
    [Google Scholar]
  39. Mettenleiter T. C., Lukàcs N., Rziha H.-J. 1985b; Pseudorabies virus avirulent strains fail to express a major glycoprotein. Journal of Virology 56:307–311
    [Google Scholar]
  40. Mettenleiter T. C., Lukàcs N., Thiel H.-J., Schreurs C., Rziha H.-J. 1986; Location of the structural gene of pseudorabies virus glycoprotein complex gll. Virology 152:66–75
    [Google Scholar]
  41. Mettenleiter T. C., Schreurs C., Thiel H.-J., Rziha H.-J. 1987; Variability of pseudorabies virus glycoprotein gl expression. Virology 158:141–146
    [Google Scholar]
  42. Mettenleiter T. C., Lomniczi B., Sugg N., Schreurs C., Ben-Porat T. 1988; Host-cell specific growth advantage of pseudorabies virus with a deletion in the genome sequences encoding a structural glycoprotein. Journal of Virology 62:12–19
    [Google Scholar]
  43. Pereira L., Klassen T., Baringer J. R. 1980; Type-common and type-specific monoclonal antibody to herpes simplex virus type 1. Infection and Immunity 29:724–732
    [Google Scholar]
  44. Pereira L., Ali M., Kousoulas K., Huo B., Banks T. 1989; Domain structure of herpes simplex virus 1 glycoprotein B: neutralizing epitopes map in regions of continuous and discontinuous residues. Virology 172:11–24
    [Google Scholar]
  45. Petrovskis E. A., Timmins J. G., Armentrout M. A., Marchioli C. C., Yancey R. J., Post L. E. 1986a; DNA sequence of the gene for pseudorabies virus gp50, a glycoprotein without A-linked glycosylation. Journal of Virology 59:216–223
    [Google Scholar]
  46. Petrovskis E. A., Timmins J. G., Post L. E. 1986b; Use of λgtll to isolate genes for two pseudorabies virus glycoproteins with homology to herpes simplex virus and varicella-zoster virus glycoproteins. Journal of Virology 60:185–193
    [Google Scholar]
  47. Petrovskis E. A., Timmins J. G., Gierman T. M., Post L. E. 1986c; Deletions in vaccine strains of pseudorabies virus and their effect on synthesis of glycoprotein gp63. Journal of Virology 60:1166–1169
    [Google Scholar]
  48. Petrovskis E. A., Duffus P. W. H., Thomsen D. R., Meyer A. L., Post L. E. 1988; Sequence of pseudorabies virus and infectious bovine rhinotracheitis virus glycoprotein H genes. Proceedings of the 13th International Herpesvirus Workshop, Irvine U.S.A: 217
    [Google Scholar]
  49. Platt K. B., Hill H. T., Seymour C. L., Pirtle E. C. 1986; Evaluation of a diagnostic antigen for the detection of Aujeszky's disease virus-infected subunit-vaccinated pig. Veterinary Microbiology 11:25–40
    [Google Scholar]
  50. Powell K., Buchan A., Sim C., Watson D. 1974; Type-specific protein in herpes simplex virus envelope reacts with neutralizing antibody. Nature; London: 249360–361
    [Google Scholar]
  51. Quint W., Gielkens A., Van Oirschot J., Berns A., Cuypers H. T. 1987; Construction and characterization of deletion mutants of pseudorabies virus: a new generation of ‘live’ vaccines. Journal of General Virology 68:523–534
    [Google Scholar]
  52. Rea T. J., Timmins J. G., Long G. W., Post L. E. 1985; Mapping and sequence of the gene for the pseudorabies virus glycoprotein which accumulates in the medium of infected cells. Journal of Virology 54:21–29
    [Google Scholar]
  53. Rector J. T., Lausch R. N., Oakes J. E. 1982; Use of monoclonal antibodies for analysis of antibody-dependent immunity to ocular herpes simplex virus type 1 infection. Infection and Immunity 38:168–174
    [Google Scholar]
  54. Rector J. T., Lausch R. N., Oakes J. E. 1984; Identification of infected cell-specific monoclonal antibodies and their role in host resistance to ocular herpes simplex virus type 1 infection. Journal of General Virology 65:657–661
    [Google Scholar]
  55. Remaut E., Stanssens P., Fiers W. 1981; Plasmid vectors for high-efficiency expression controlled by the PL promotor of coliphage lambda. Gene 15:81–93
    [Google Scholar]
  56. Remaut E., Tsao H., Fiers W. 1983; Improved plasmid vectors with a thermoinducible expression and temperature-regulated runaway replication. Gene 22:103–113
    [Google Scholar]
  57. Robbins A. K., Watson R. J., Whealy M. E., Hays W. W., Enquist L. W. 1986a; Characterization of a pseudorabies virus glycoprotein gene with homology to herpes simplex virus type 1 and type 2 glycoprotein gC. Journal of Virology 58:339–347
    [Google Scholar]
  58. Robbins A. K., Whealy M. E., Watson R. J., Enquist L. W. 1986b; The pseudorabies virus gene encoding glycoprotein gill is not essential for growth in tissue culture. Journal of Virology 59:635–645
    [Google Scholar]
  59. Robbins A. K., Dorney D. J., Wathen M. W., Whealy M. E., Gold C., Watson R. J., Holland L. E., Weed S. D., Levine M., Glorioso J. C., Enquist L. W. 1987; The pseudorabies virus gll gene is closely related to the gB glycoprotein gene of herpes simplex virus. Journal of Virology 61:2691–2701
    [Google Scholar]
  60. Roberts P. L., Duncan B. E., Raybould T. J. G., Watson D. H. 1985; Purification of herpes simplex virus glycoproteins B and C using monoclonal antibodies and their ability to protect mice against lethal challenge. Journal of General Virology 66:1073–1085
    [Google Scholar]
  61. Rüther U., Müller-Hill B. 1983; Easy identification of cDNA clones. EMBO Journal 2:1791–1794
    [Google Scholar]
  62. Scholtissek S., Grosse F. 1988; A plasmid vector system for the expression of a triprotein consisting of beta-galactosidase, a collagenase recognition site and a foreign gene product. Gene 62:55–64
    [Google Scholar]
  63. Spear P. 1975; Glycoproteins specified by herpes simplex type-1: their synthesis, processing and antigenic relatedness. IARC Scientific Publications 11:49–60
    [Google Scholar]
  64. Strebel K., Beck E., Strohmaier K., Schaller H. 1986; Characterization of foot-and-mouth disease virus gene products with antisera against bacterially synthesized fusion proteins. Journal of Virology 57:983–991
    [Google Scholar]
  65. Strynadka N. C. L., Parker J. M. R., Scraba D. G., Hodges R. S. 1988; Use of synthetic peptides to map the antigenic determinants of glycoprotein D of herpes simplex virus. Journal of Virology 62:3474–3483
    [Google Scholar]
  66. Thiel H.-J., Iglehart J. D., Matthews T. J., Broughton E. M. 1981; Preparation of autologous antiserum against SSV nonproducer cells and its partial characterization. Virology 112:634–641
    [Google Scholar]
  67. Van Drunen Littel-Van Den Hurk S., Van Den Hurk J. V., Babiuk L. A. 1985; Topographical analysis of bovine herpes virus type-1 glycoproteins: use of monoclonal antibodies to identify and characterize functional epitopes. Virology 144:216–227
    [Google Scholar]
  68. Van Drunen Littel-Van Den Hurk S., Zamb T., Babiuk L. A. 1989; Synthesis, cellular location, and immunogenicity of bovine herpesvirus 1 glycoproteins gl and gill expressed by recombinant vaccinia virus. Journal of Virology 63:2159–2168
    [Google Scholar]
  69. Van Oirschot J. T. 1988; Induction of antibodies to gl in pigs exposed to different doses of mildly virulent strain of Aujeszky's disease virus. Veterinary Record 122:599–603
    [Google Scholar]
  70. Van Oirschot J. T. 1989; The antibody response to glycoprotein gl and the control of Aujeszky's disease virus. In Vaccination and Control of Aujeszky’s Disease 49 pp 129–138 Van Oirschot J. T. Edited by Dordrecht: Kluwer Academic Publications;
    [Google Scholar]
  71. Van Oirschot J. T., Waal C. A. H. 1987; An ELISA to distinguish between Aujeszky’s disease vaccinated and infected pigs. Veterinary Record 121:305–306
    [Google Scholar]
  72. Van Oirschot J. T., Rziha H.L, Pol J. M. A., Van Zaane D. 1986; Differentiation of serum antibodies from pigs vaccinated or infected with Aujeszky’s disease virus by a competitive enzyme immunoassay. Journal of General Virology 67:1179–1182
    [Google Scholar]
  73. Van Oirschot J. T., Houwers D. J., Rziha H.-J., Moonen P. J. L. M. 1988; Development of an ELISA for detection of antibodies to glycoprotein I of Aujeszky’s disease virus: a method for the serological differentiation between infected and vaccinated pigs. Journal of Virological Methods 22:191–206
    [Google Scholar]
  74. Visser N., Lütticken D. 1989; Experiences with a gU/TK modified live pseudorabies virus vaccine strain Begonia. In Vaccination and Control of Aujeszky’s Disease 49 pp 37–44 Van Oirschot J. T. Edited by Dordrecht: Kluwer Academic Publications;
    [Google Scholar]
  75. Wardley R. C., Post L. E. 1989; The use of the gX-deleted vaccine PRV△TK△gX-1 in the control of Aujeszky’s disease. In Vaccination and Control of Aujeszky’s Disease 49 pp 13–25 Van Oirschot J. T. Edited by Dordrecht: Kluwer Academic Publications;
    [Google Scholar]
  76. Wathen L. M. K., Platt K. B., Wathen M. W., Van Deusen R. A., Whetstone C. A., Pirtle E. C. 1985; Production and characterization of monoclonal antibodies against pseudorabies virus. Virus Research 4:19–29
    [Google Scholar]
  77. Wathen M. W., Wathen L. M. K. 1986; Characterization and mapping of a non-essential pseudorabies virus glycoprotein. Journal of Virology 58:173–178
    [Google Scholar]
  78. Wathen M. W., Wathen L. M. K. 1984; Isolation, characterization, and physical mapping of a pseudorabies virus mutant containing antigenically altered gp50. Journal of Virology 51:57–62
    [Google Scholar]
  79. Weijer W. J., Drijfhout J. W., Geerligs H. J., Bloemhoff W., Feijlbrief M., Bos C. A., Hoogerhout P., Kerling K. E., Popken-Boer T., Slopsema K., Wilterdink J.B., Welling G. W., Welling-Wester S. 1988; Antibodies against synthetic peptides of herpes simplex virus type 1 glycoprotein D and their capability to neutralize viral infectivity in vitro . Journal of Virology 62:501–510
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-5-1141
Loading
/content/journal/jgv/10.1099/0022-1317-71-5-1141
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error