1887

Abstract

The expression of the transformation-associated Epstein-Barr virus (EBV)-encoded nuclear antigens (EBNAs) 1 to 6 and membrane protein LMP-1 was studied in a series of somatic cell hybrids derived from the fusion of the EBV-transformed lymphoblastoid cell line (LCL) KR-4, and the EBV-carrying Burkitt’s lymphoma lines Daudi, P3HR-1 and Raji, with non-B cell lines of fibroblast, erythroid, myeloid and epithelial origin. Expression of EBNAs 2 to 6 was down-regulated in the hybrids in parallel with extinction of the B cell markers CD19, CD20, CD21, CD23, HLA class II, and surface or cytoplasmic immunoglobulin. LMP-1 was expressed independently of EBNA-2 in hybrids derived by the fusion of the LMP-1-positive KR-4 and P3HR-1 cell lines with epithelial and myeloid cells, respectively. LMP-1 was down-regulated in hybrids derived by the fusion of P3HR-1 with an erythroid cell line and in the hybrid between Raji and a mouse fibrosarcoma line. EBNA-1 was the only EBV antigen that was regularly expressed in the hybrids regardless of the dominating cellular phenotype. The autonomous expression of EBNA-1 suggests that its regulatory pathway is independent of phenotype-associated cellular or viral factors. In contrast, the expression of EBNAs 2 to 6 appears to require a B cell environment. EBNA-2 was shown to contribute to the regulation of LMP expression in B cells. We show that in LCL-carcinoma hybrids the dominating epithelial phenotype is permissive for LMP expression in the absence of EBNA-2.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-12-3025
1991-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/12/JV0720123025.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-12-3025&mimeType=html&fmt=ahah

References

  1. Acolla R. S., Gross N., Carrel S., Corte G. 1981; Distinct forms of both alpha and beta subunits are present in the human Ia molecule pool. Proceedings of the National Academy of Sciences, U. S. A. 78:4549–4551
    [Google Scholar]
  2. Altiok E., Minarovits J., LiFu H., Contreras-Brodin B., Klein G., Ernberg I. 1991; Host cell phenotype dependent switch on/off of the BCR2-BWR1 promoter complex regulates the Epstein–Barr virus nuclear antigen (EBNA) 2-6 expression. Proceedings of the National Academy of Sciences, U. S. A. (in press)
    [Google Scholar]
  3. Barnstable C. J., Bodmer W. F., Brown G., Galfre G., Milstein C., Williams A. F., Zigler A. 1978; Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens. New tools for genetic analysis. Cell 14:9–12
    [Google Scholar]
  4. Bergman Y., Strich B., Sharir H., Ber R., Laskov R. 1990; Extinction of Ig genes expression in myeloma × fibroblast somatic cell hybrids is accompanied by repression of the oct-2 gene encoding a B-cell specific transcription factor. EMBO Journal 9:849–855
    [Google Scholar]
  5. Bodescot M., Perricaudet M., Farrell P. J. 1986; A promoter for the highly spliced EBNA family of RNAs of Epstein-Barr virus. Journal of Virology 61:3424–3430
    [Google Scholar]
  6. Bornkamm G., Delius H., Zimber U., Hudewentz J., Epstein M. A. 1980; Comparison of the Epstein-Barr virus strains of different origin by analysis of the viral DNAs. Journal of Virology 35:603–618
    [Google Scholar]
  7. Calender A., Billaud M., Aubry J., Banchereau J., Vuillaume M., Lenoir G. 1987; Epstein-Barr virus (EBV) induces expression of B-cell activation markers on in vitro infection of EBV-negative B-lymphoma cells. Proceedings of the National Academy of Sciences, U. S. A. 48:8060–8064
    [Google Scholar]
  8. Collins S. J., Gallo R. C., Gallager R. E. 1977; Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature, London 270:347–349
    [Google Scholar]
  9. Contreras-Salazar B., Klein G., Masucci M. G. 1989; Host cell-dependent regulation of growth transformation-associated Epstein-Barr virus (EBV) antigens in somatic cell hybrids. Journal of Virology 63:2768–2772
    [Google Scholar]
  10. Dillner J., Kallin B. 1988; The Epstein-Barr virus proteins. Advances in Cancer Research 50:95–158
    [Google Scholar]
  11. Dillner J., Kallin B., Ehlin-Henriksson B., Timar L., Klein G. 1985; Characterization of a second Epstein-Barr virus determines nuclear antigen associated with the Bam HI WYH region of EBV DNA. International Journal of Cancer 35:359–366
    [Google Scholar]
  12. Ehlin-Henriksson B., Klein G. 1984; Distinction between Burkitt’s lymphoma subgroups by monoclonal antibodies: relationships between antigen expression and type of chromosomal translocation. International Journal of Cancer 33:459–463
    [Google Scholar]
  13. Ernberg I., Falk K., Minarovits J., Busson P., Tursz T., Masucci M. G., Klein G. 1989; The role of methylation in the phenotype-dependent modulation of Epstein-Barr nuclear antigen 2 and latent membrane protein genes in cells latently infected with Epstein-Barr virus. Journal of General Virology 70:2989–3002
    [Google Scholar]
  14. FÅhraeus R., Li F. H., Ernberg I., Finke J., Rowe M., Klein G., Falk K., Nilsson E., Manmohan Y., Busson P., Tursz T., Kallin B. 1988; Expression of Epstein-Barr virus-encoded proteins in nasopharyngeal carcinoma. International Journal of Cancer 42:329–338
    [Google Scholar]
  15. FÅhraeus R., Jansson A., Ricksten A., Sjöblom A., Rymo L. 1990; EBV-encoded EBNA-2 protein activates the viral LMP promoter by modulating the activity of a negative regulatory element. Proceedings of the National Academy of Sciences, U. S. A. 87:7390–7394
    [Google Scholar]
  16. Fennewald S., van Santen V., Kieff E. 1984; Nucleotide sequence of a mRNA transcribed in latent growth-transforming virus infection indicates that it may encode a membrane protein. Journal of Virology 51:411–419
    [Google Scholar]
  17. Gey G. O., Coffman W. D., Kubicek M. T. 1952; Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Research 12:264
    [Google Scholar]
  18. Gregory C. D., Rowe M., Rickinson A. B. 1990; Different Epstein-Barr virus–B cell interactions in phenotypically distinct clones of Burkitt’s lymphoma cell lines. Journal of General Virology 71:1481–1495
    [Google Scholar]
  19. Hinuma Y., Grace J. T. 1967; Cloning of immunoglobulin producing human leukemic and lymphoma cells in long term cultures. Proceedings of the Society of Experimental Biology and Medicine 124:107–111
    [Google Scholar]
  20. Hitt M. M., Allday M. J., Hara T., Karran L., Jones M. D., Busson P., Tursz T., Ernberg I., Griffin B. 1989; EBV gene expression in an NPC-related tumor. EMBO Journal 8:2639–2651
    [Google Scholar]
  21. Hurley E. A., Agger S., McNeil J. A., Lawrence J. B., Calender A., Lenoir G. M., Thorley-Lawson D. 1989; When Epstein-Barr virus persistently infects B-cell lines, it frequently integrates. Journal of Virology 65:1245–1254
    [Google Scholar]
  22. Jansson A., Masucci M. G., Rymo L. 1992; Methylation of discrete sites within the enhancer region regulates the activity of the Epstein-Barr virus Bam HI W in group I Burkitt’s lymphoma lines. Journal of Virology (in press)
    [Google Scholar]
  23. Jones M. D., Foster L., Sheedy T., Griffin B. 1984; The EBV virus genome in Daudi Burkitt lymphoma cells has a deletion similar to that observed in a non-transforming strain (P3HR1) of the virus. EMBO Journal 3:813–821
    [Google Scholar]
  24. Junker S., Pedersen S., Schreiber E., Matthias P. 1990; Extinction of an immunoglobulin k promoter in cell hybrids is mediated by the octamer motif and correlates with suppression of Oct-2 expression. Cell 61:467–474
    [Google Scholar]
  25. Klein E., Klein G., Nadkarni J. S., Nadkarni J. J., Wigzell H., Clifford P. 1968; Surface IgM-kappa specificity on a Burkitt lymphoma cell in vivo and in derived culture cell lines. Cancer Research 28:1300–1310
    [Google Scholar]
  26. Klein G., Terasaki P., Billing R., Honig R., Jondal M., Rosen A., Seuthen J., Clements G. 1977; Somatic cell hybrids between human lymphoma lines. III. Surface markers. International Journal of Cancer 19:66–76
    [Google Scholar]
  27. Klein G., Zeuthen J., Eriksson I., Terasaki P., Bernoco M., Rosen A., Masucci G., Povey S., Ber R. 1980; Hybridization of a myeloid leukemia-derived human cell line (K562) with a human Burkitt’s lymphoma line (P3HR-1). Journal of the National Cancer Institute 64:725–738
    [Google Scholar]
  28. Koeffler H. P., Sparkes R. S., Billing R., Klein G. 1981; Somatic cell hybrid analyses of hematopoietic differentiation. Blood 58:1159–1163
    [Google Scholar]
  29. Kozbor D., Lagarde A. E., Roder J. C. 1982; Human hybridomas constructed with antigen-specific Epstein-Barr virus transformed cell lines. Proceedings of the National Academy of Sciences, U. S. A. 79:6651–6655
    [Google Scholar]
  30. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 277:680–685
    [Google Scholar]
  31. Littlefield J. W. 1964; Three degrees of guanylic acid-inosonic acid pyrophosphorylase deficiency in mouse fibroblasts. Nature, London 203:1142–1144
    [Google Scholar]
  32. LozzIo C. B., LozzIo B. B. 1975; Human chronic myelogenous leukemia cell line with positive Philadelphia chromosome. Blood 45:321–334
    [Google Scholar]
  33. Matsuo T., Heller M., Petti L., O’Shiro E., Kieff E. 1984; Persistence of the entire Epstein-Barr virus genome integrated into human lymphocyte DNA. Science 226:1322–1325
    [Google Scholar]
  34. Nadler L. M., Anderson K. C., Marti G., Bates M., Park E., Daley J. F., Schlossman S. F. 1983; B4, a human B-lymphocyte-associated antigen expressed on normal, mitogen-activated, and malignant B lymphocytes. Journal of Immunology 131:244–250
    [Google Scholar]
  35. Nilsson K., Klein G. 1982; Phenotypic and cytogenic characteristics of human B-lymphoid cell lines and their relevance for the etiology of Butkitt’s lymphoma. Advances in Cancer Research 37:319–380
    [Google Scholar]
  36. Nudelman E., Kannagi R., Hakomori S., Parsons M., Lipinski M., Wiels J., Fellows M., Tursz T. 1983; a glycolipid antigen associated with Burkitt lymphoma defined by a monoclonal antibody. Science 220:509–511
    [Google Scholar]
  37. Pulvertaf R. J. V. 1964; Cytology of Burkitt’s tumor (African lymphoma). Lancet i:238–240
    [Google Scholar]
  38. Reedman B., Klein G. 1973; Cellular localization of an EBV-associated complement fixing antigen in producer and non producer lymphoblastoid cell lines. International Journal of Cancer 11:499–502
    [Google Scholar]
  39. Ricksten A., Olsson T., Rymo L. 1988; The 5′ flanking region of the gene for the Epstein-Barr virus-encoded nuclear antigen 2 contains a cell type specific cis-acting regulatory element that activates transcription in transfected B cells. Nucleic Acids Research 16:8391–8400
    [Google Scholar]
  40. Ritz J., Pesando J. M., Notis-McConarty J., Lazarus H., Schlossman S. F. 1980; A monoclonal antibody to human acute lymphoblastic leukaemia antigen. Nature, London 283:583–585
    [Google Scholar]
  41. Rowe D. T., Rowe M., Evan G., Wallace L. E., Farrell P. J., Rickinson A. B. 1986; Restricted expression of EBV latent genes and T-lymphocyte detected membrane antigen in Burkitt lymphoma cells. EMBO Journal 5:2599–2607
    [Google Scholar]
  42. Rowe M., Rowe D. T., Gregory C. D., Young L. S., Farrell P. J., Rupani H., Rickinson A. B. 1987; Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt’s lymphoma cells. EMBO Journal 6:2743–2751
    [Google Scholar]
  43. Sambrook J., Fritsch E. F., Maniatis T. 1989; Isolation of DNA from mammalian cells. In Molecular Cloning: A Laboratory Manual, 2nd. edn., pp 916–9 19 New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  44. Sample J., Brooks L., Sample C., Young L., Rowe M., Rickinson A., Kieff E. 1991; Restricted Epstein-Barr virus protein expression in Burkitt lymphoma is reflected in a novel EBNA-1 mRNA and transcriptional initiation site. Proceedings of the National Academy of Sciences, U. S. A. 88:6343–6347
    [Google Scholar]
  45. Sample J., Hummel M., Braun D., Birkenbach M., Kieff E. 1986; Nucleotide sequences of mRNAs encoding Epstein-Barr virus nuclear proteins. A probable transcriptional initiation site. Proceedings of the National Academy of Sciences, U. S. A. 83:5096–5100
    [Google Scholar]
  46. Sample J., Liebowitz D., Kieff E. 1989; Two related Epstein-Barr virus membrane proteins are encoded by separate genes. Journal of Virology 63:933–937
    [Google Scholar]
  47. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  48. Speck S. H., Pfitzner A. J., Strominger J. L. 1986; An Epstein-Barr virus transcript from a latently infected growth transformed B-cell line encodes a highly repetitive polypeptide. Proceedings of the National Academy of Sciences, U. S. A. 83:9298–9302
    [Google Scholar]
  49. Stashenko P., Nadler L. M., Hardy R., Schlossman S. F. 1980; Characterization of a human B-lymphocyte-specific antigen. Journal of Immunology 125:1678–1685
    [Google Scholar]
  50. Thorley-Lawson D. A., Mann K. P. 1985; Early events in Epstein-Barr virus infection provide a model for B-cell activation. Journal of Experimental Medicine 162:45
    [Google Scholar]
  51. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, U. S. A. 76:4350–4354
    [Google Scholar]
  52. Tripputi P., Guerin S., Moore D. 1988; Two mechanisms for the extinction of gene expression in hybrid cells. Science 241:1205–1207
    [Google Scholar]
  53. Wiels J., Lenoir G. M., Fellows M., Tursz T. 1981; Monoclonal antibody against a Burkitt lymphoma associated antigen. Proceedings of the National Academy of Sciences, U. S. A. 78:6485–6488
    [Google Scholar]
  54. Woisetschlaeger M., Strominger J. L., Speck S. H. 1989; Mutually exclusive use of viral promoters in Epstein-Barr virus latently infected lymphocytes. Proceedings of the National Academy of Sciences, U. S. A. 86:6489–6500
    [Google Scholar]
  55. Yates J., Warren N., Sugden B. 1985; Stable replication of plasmid derived from Epstein-Barr virus in various mammalian cells. Nature, London 313:812–815
    [Google Scholar]
  56. Yokochi T., Holly R. D., Clark E. A. 1982; B-lymphoblast antigen (BB-1) expressed on Epstein-Barr virus-activated B-cell blasts, B-lymphoblastoid cell lines and Burkitt lymphomas. Journal of Immunology 128:823–827
    [Google Scholar]
  57. Zeuthen J., Klein G., Ber R., Masucci G., Bisballe S., Povey S., Terasaki P., Ralph P. 1982; Human lymphoma-lymphoma hybrids and lymphoma-leukemia hybrids. I. Isolation, characterization, cell surface markers, and B-cell markers. Journal of the National Cancer Institute 68:179–191
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-12-3025
Loading
/content/journal/jgv/10.1099/0022-1317-72-12-3025
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error