1887

Abstract

Glycoprotein C (gC) of herpes simplex virus type 1 (HSV-1) is a receptor for the complement component C3B. We have previously isolated HSV-1 gC strains (TN1, TN2 and TN3) from a patient with recurrent keratitis at three different times. These are very rare isolates because gC was thought to be essential for the virus . To determine whether gC modifies the interaction of complement with cell-free virus or virus-infected cells, we constructed gC recombinant viruses in which the intact gC gene of strain KOS was inserted into the TN1 virus genome. TN1 virus was inactivated by complement and TN1 virus-infected cells were lysed by complement; however, gC recombinant viruses became resistant to these effects of complement. These results suggest a role for gC in protection of both the virion envelope and the infected cell surface against damage by complement. TN1 virus was inactivated by complement from rats (Wistar, WKA, F344 and SD), guinea-pigs (Hartley) and humans, but not by complement from mice (C3H, DDD and BALB/c), which indicates that mice seem to be inappropriate as an experimental model for the study of HSV infection in which complement factors need to be considered.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-4-915
1991-04-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/4/JV0720040915.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-4-915&mimeType=html&fmt=ahah

References

  1. Bartholomew R. M., Esser A. F., Muller-Eberhard H. J. 1978; Lysis of oncornaviruses by human serum: isolation of the viral complement (C1) receptor and identification as p15E. Journal of Experimental Medicine 147:844–853
    [Google Scholar]
  2. Bielefeldt Ohmann H., Babiuk L. A. 1988; Induction of receptors for complement and immunoglobulins by herpesviruses in various species. Virus Research 9:335–342
    [Google Scholar]
  3. Buckmaster E. A., Gompels U., Minson A. 1984; Characterization and physical mapping of an HSV-1 glycoprotein of approximately 115 × 103 molecular weight. Virology 139:408–413
    [Google Scholar]
  4. Ones D. B., Lyss A. P., Bina M., Corkey R., Kefalides N. A., Friedman H. M. 1982; Fc and C3 receptor induced by herpes simplex virus on cultured human endothelial cells. Journal of Clinical Investigation 69:123–128
    [Google Scholar]
  5. DeLuca N. A., McCarthy A. M., Schaffer P. A. 1985; Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. Journal of Virology 56:558–570
    [Google Scholar]
  6. Denniston K. J., Madden M. J., Enquist L. W., Vande Woude G. 1981; Characterization of coliphage lambda hybrids carrying DNA fragments from herpes simplex virus type 1 defective interfering particles. Gene 15:365–378
    [Google Scholar]
  7. Dix R. D., McKendall R. R., Baringer J. R. 1983; Comparative neurovirulence of herpes simplex virus type 1 strains after peripheral or intracerebral inoculation of BALB/c mice. Infection and Immunity 40:103–112
    [Google Scholar]
  8. Edwards J. E. Jr, Gaither T. A., O’Shea J. J., Rotrosen D., Lawley T. J., Wright S. A., Frank M. M., Green I. 1986; Expression of specific binding sites on Candida with functional and antigenic characteristics of human complement receptors. Journal of Immunology 137:3577–3583
    [Google Scholar]
  9. Edwards K. M., Snyder P. N., Wright P. F. 1986; Complement activation by respiratory syncytial virus-infected cells. Archives of Virology 88:49–56
    [Google Scholar]
  10. Friedman H. M., Cohen G. H., Eisenberg R. J., Siedel C. A., Cines D. B. 1984; Glycoprotein C of herpes simplex virus 1 acts as a receptor for the C3b complement component on infected cells. Nature, London 309:633–637
    [Google Scholar]
  11. Friedman H. M., Glorioso J., Cohen G. H., Hastings J. C., Harris S. L., Eisenberg R. J. 1986; Binding of complement component C3b to glycoprotein gC of herpes simplex virus type 1: mapping of gC-binding sites and demonstration of conserved C3b binding in low-passage clinical isolates. Journal of Virology 60:470–475
    [Google Scholar]
  12. Fries L. F., Friedman H. M., Cohen G. H., Eisenberg R. J., Hammer C. H., Frank M. M. 1986; Glycoprotein C of herpes simplex virus 1 is an inhibitor of the complement cascade. Journal of Immunology 137:1636–1641
    [Google Scholar]
  13. Frink R. J., Eisenberg R., Cohen G., Wagner E. K. 1983; Detailed analysis of the protein of the herpes simplex virus type 1 genome encoding glycoprotein C. Journal of Virology 45:634–647
    [Google Scholar]
  14. Ghosh-Choudhury N., Butcher M., Ghosh H. P. 1990; Expression from cloned DNA of biologically active glycoprotein C of herpes simplex virus type 1 in mammalian cells. Journal of General Virology 71:689–699
    [Google Scholar]
  15. Glorioso J., Schroder C. H., Kumel G., Szczesiul M., Levine M. 1984; Immunogenicity of herpes simplex virus glycoprotein gC and gB and their role in protective immunity. Journal of Virology 50:805–812
    [Google Scholar]
  16. Glorioso J., Kees U., Kumel G., Kirchner H., Krammer P. H. 1985; Identification of herpes simplex virus type 1 (HSV-1) glycoprotein gC as the immunodominant antigen for HSV-l-specific memory cytotoxic T lymphocytes. Journal of Immunology 135:575–582
    [Google Scholar]
  17. Goldstein L. C., Coley L., McDougall J. K., Tolentino E., Nowinski R. C. 1983; Monoclonal antibodies to herpes simplex viruses: use in antigenic typing and rapid diagnosis. Journal of Infectious Diseases 147:829–837
    [Google Scholar]
  18. Grewal A. S., Babiuk L. A. 1980; Complement-dependent, polymorphonuclear neutrophil-mediated cytotoxicity of herpesvirus-infected cells: possible mechanism(s) of cytotoxicity. Immunology 40:151–161
    [Google Scholar]
  19. Harris S. L., Frank I., Yee A., Cohen G. H., Eisenberg R. J., Friedman H. M. 1990; Glycoprotein C of herpes simplex virus type 1 prevents complement-mediated cell lysis and virus neutralization. Journal of Infectious Diseases 162:331–337
    [Google Scholar]
  20. Hidaka Y., Sakuma S., Kumano Y., Minagawa H., Mori R. 1990; Characterization of glycoprotein C-negative mutants of herpes simplex virus type 1 isolated from a patient with keratitis. Archives of Virology 113:195–207
    [Google Scholar]
  21. Hirsch R. L., Wolinsky J. S., Winkelstein J. A. 1986; Activation of the alternative complement pathway by mumps infected cells: relationship to viral neuraminidase activity. Archives of Virology 87:181–190
    [Google Scholar]
  22. Hoggan M. D., Roizman B. 1959; The isolation and properties of a variant of herpes simplex producing multinucleated giant cells in monolayer cultures in the presence of antibody. American Journal of Hygiene 70:208–219
    [Google Scholar]
  23. Huemer H. P., Broker M., Larcher C., Lambris J. D., Dierich M. P. 1989; The central segment of herpes simplex virus type 1 glycoprotein C (gC) is not involved in C3b binding: demonstration by using monoclonal antibodies and recombinant gC expressed in Escherichia coli . Journal of General Virology 70:1571–1578
    [Google Scholar]
  24. Jacobson J. G., Martin S. L., Coen D. M. 1989; A conserved open reading frame that overlaps the herpes simplex virus thymidine kinase gene is important for viral growth in cell culture. Journal of Virology 63:1839–1843
    [Google Scholar]
  25. Johnson D. C., McDermott M. R., Chrisp C., Glorioso J. C. 1986; Pathogenicity in mice of herpes simplex virus type 2 mutants unable to express glycoprotein C. Journal of Virology 58:36–42
    [Google Scholar]
  26. Kaul T. N., Faden H., Baker R., Ogra P. L. 1984; Virus-induced complement activation and neutrophil-mediated cytotoxicity against respiratory syncytial virus (RSV). Clinical and Experimental Immunology 56:501–508
    [Google Scholar]
  27. Kobilinsky L., Hardy W. M. Jr, Ellis R., Witkin S. S., Day N. K. 1980; In vitro activation of feline complement by feline leukemia virus. Infection and Immunity 29:165–170
    [Google Scholar]
  28. Kotwal G. J., Moss B. 1988; Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins (1988). Nature, London 335:176–178
    [Google Scholar]
  29. Lambre C. R., Kazatchkine M. D., Maillet F., Thibon M. 1982; Guinea-pig erythrocytes, after their contact with influenza virus, acquire the ability to activate the human alternative complement pathway through virus-induced desialation of the cells. Journal of Immunology 128:629–634
    [Google Scholar]
  30. Lee G. T. -Y., Pogue-Geile K. L., Pereira L., Spear P. G. 1982; Expression of herpes simplex virus glycoprotein C from a DNA fragment inserted into the thymidine kinase gene of this virus. Proceedings of the National Academy of Sciences, U,. S,. A 79:6612–6616
    [Google Scholar]
  31. Longnecker R., Chatterjee S., Whitley R. J., Roizman B. 1987; Identification of a herpes simplex virus 1 glycoprotein gene within a gene cluster dispensable for growth in cell culture. Proceedings of the National Academy of Sciences, U,. S,. A 84:4303–4307
    [Google Scholar]
  32. McConnell I., Klein G., Lint T. F., Lachman P. J. 1978; Activation of the alternative complement pathway by human B cell lymphoma lines is associated with Epstein-Barr virus transformation of the cells. European Journal of Immunology 8:453–458
    [Google Scholar]
  33. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  34. McNearney T. A., Odell C., Holers V. M., Spear P. G., Atkinson J. P. 1987; Herpes simplex virus glycoproteins gC-1 and gC-2 bind to the third component of complement and provide protection against complement-mediated neutralization of viral infectivity. Journal of Experimental Medicine 166:1525–1535
    [Google Scholar]
  35. Mold C., Bradt B. M., Nemerow G. R., Cooper N. R. 1988; Epstein-Barr virus regulates activation and processing of the third component of complement. Journal of Experimental Medicine 168:949–969
    [Google Scholar]
  36. Nowinski R. C., Tam M. R., Goldstein L. C., Stong L., Kou C. C., Corey L., Stamm W. E., Handsfield H. H., Knapp J. S., Holmes K. K. 1983; Monoclonal antibodies for diagnosis of infectious diseases in humans. Science 219:637–644
    [Google Scholar]
  37. Okada H., Okada N. 1981; Sendai virus infected cells are readily cytolysed by guinea-pig complement without antibody. Immunology 43:337–344
    [Google Scholar]
  38. Rosenthal K. L., Smiley J. R., South S., Johnson D. C. 1987; Cells expressing herpes simplex virus glycoprotein gC but not gB, gD, or gE are recognized by murine virus-specific cytotoxic T lymphocytes. Journal of Virology 61:2438–2447
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd. edn New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Seidel-Dugan C., Ponce de Leon M., Friedman H. M., Fries L. F., Frank M. M., Cohen G. H., Eisenberg R. J. 1988; C3b receptor activity on transfected cells expressing glycoprotein C of herpes simplex virus type 1 and 2. Journal of Virology 62:4027–4036
    [Google Scholar]
  41. Sissons J. G. P., Oldstone M. B. A., Schreiber R. D. 1980; Antibody-independent activation of the alternative complement pathway by measles virus-infected cells. Proceedings of the National Academy of Sciences, U,. S,. A 77:559–562
    [Google Scholar]
  42. Smiley M. L., Hoxie J. A., Friedman H. M. 1985; Herpes simplex virus type 1 infection of endothelial, epithelial, and fibroblast cells induces a receptor for C3b. Journal of Immunology 134:2673–2678
    [Google Scholar]
  43. Smith T. F., Mcintosh K., Fishaut M., Henson P. M. 1981; Activation of complement by cells infected with respiratory syncytial virus. Infection and Immunity 33:43–48
    [Google Scholar]
  44. Spear P. G. 1984; Glycoproteins specified by herpes simplex virus. In The Herpesviruses vol 3 pp 315–357 Edited by Roizman B. New York: Plenum Press;
    [Google Scholar]
  45. Tarleton R. L., Kemp W. M. 1981; Demonstration of IgG-Fc and C3 receptors on adult Schistosoma mansoni . Journal of Immunology 126:379–384
    [Google Scholar]
  46. Van Strijp J. A. G., Van Kessel K. P. M., Miltenburg L. A. M., Fluit A. C., Verhoff J. 1988; Attachment of human polymorphonuclear leukocytes to herpes simplex virus-infected fibroblasts mediated by antibody–independent complement activation. Journal of Virology 62:847–850
    [Google Scholar]
  47. Wagner M. J., Sharp J. A., Summers W. C. 1981; Nucleotide sequence of the thymidine kinase gene of herpes simplex virus type 1. Proceedings of the National Academy of Sciences, U,. S,. A 78:1441–1445
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-4-915
Loading
/content/journal/jgv/10.1099/0022-1317-72-4-915
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error