1887

Abstract

Hybridomas producing human monoclonal antibodies (HMAbs) against varicella-zoster virus (VZV) were generated by fusing murine myeloma cells with human lymphocytes immunized . An assay system was developed to select anti-glycoprotein (gp)III HMAbs from the pool of anti-VZV HMAbs. A murine anti-gpIII MAb, 4B7, did not react with a VZV-infected cell homogenate, but did react with a VZV-infected cell monolayer, whereas anti-gpI and anti-gpII MAbs reacted with both antigens. Hybridomas were screened to obtain HMAbs having a reaction profile similar to that of 4B7 and one such clone, V3, stably produces human IgG1 (κ). HMAb V3 immunoprecipitated a VZV antigen of 115K to 120K, which was not immunoabsorbed by an anti-gpII HMAb, implying that V3 recognizes gpIII. V3 neutralized VZV independently of complement, unlike anti-gpI and anti-gpII HMAbs. All five strains of VZV tested were completely neutralized by V3, and the dose of V3 required to reduce the number of virus plaques by 50% ranged from 0.027 to 0.15 µg/ml. V3 was also able to inhibit the spread of virus infection from infected to uninfected cells, whereas anti-gpI and anti-gpII HMAbs could not. In addition, V3 mediated antibody-dependent cellular cytotoxicity but not complement-dependent cytotoxicity of VZV-infected cells. The results suggest that an anti-gpIII HMAb may provide a new means of passive immunoprophylaxis and also help to identify an antigenic epitope appropriate for a subunit vaccine.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-9-2065
1991-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/9/JV0720092065.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-9-2065&mimeType=html&fmt=ahah

References

  1. Azuma J., Kurimoto T., Tsuji S., Mochizuki N., Ryoki T., Fujinaga S., Masuho Y. 1991; Phase I study on human monoclonal antibody against cytomegalovirus: pharmacokinetics and immunogenicity. Journal of Immunotherapy (in press)
    [Google Scholar]
  2. Brunell P. A., Novelli V. M., Keller P. M., Ellis R. W. 1987; Antibodies to the three major glycoproteins of varicella-zoster virus: search for the relevant host immune response. Journal of Infectious Diseases 156:430–435
    [Google Scholar]
  3. Buckmaster E. A., Gompels U., Minson A. 1984; Characterization and physical mapping of an HSV-1 glycoprotein of approximately 115 × 103 molecular weight. Virology 139:408–413
    [Google Scholar]
  4. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  5. Desai P. J., Schaffer P. A., Minson A. C. 1988; Excretion of non-infectious virus particles lacking glycoprotein H by a temperature-sensitive mutant of herpes simplex virus type 1: evidence that gH is essential for virion infectivity. Journal of General Virology 69:1147–1156
    [Google Scholar]
  6. Dubey L., Steinberg S. P., LaRussa P., Oh P., Gershon A. A. 1937; Western blot analysis of antibody to varicella-zoster virus. Journal of Infectious Diseases 157:882–888
    [Google Scholar]
  7. Feldman S., Hughes W. T., Daniel C. B. 1975; Varicella in children with cancer. Pediatrics 56:388–397
    [Google Scholar]
  8. Forghani B., Dupuis K. W., Schmidt N. J. 1984; Varicellazoster viral glycoproteins analyzed with monoclonal antibodies. Journal of Virology 52:55–62
    [Google Scholar]
  9. Foung S. K. H., Perkins S., Koropchak C., Fishwild D. M., Wittek A. E., Engleman E. G., Grumet F. C., Arvin A. M. 1985; Human monoclonal antibodies neutralizing varicella-zoster virus. Journal of Infectious Diseases 152:280–285
    [Google Scholar]
  10. Fujinaga S., Sugano T., Matsumoto Y., Masuho Y., Mori R. 1987; Antiviral activities of human monoclonal antibodies to herpes simplex virus. Journal of Infectious Diseases 155:45–53
    [Google Scholar]
  11. Fuller A. O., Santos R. E., Spear P. G. 1989; Neutralizing antibodies specific for glycoprotein H of herpes simplex virus permit viral attachment of cells but prevent penetration. Journal of Virology 63:3435–3443
    [Google Scholar]
  12. Gershon A. A., Steinberg S. P. 1979; Cellular and humoral immune responses to varicella-zoster virus in immunocompromised patients during and after varicella-zoster infections. Infection and Immunity 25:170–174
    [Google Scholar]
  13. Gompels U., Minson A. 1986; The properties and sequence of glycoprotein H of herpes simplex virus type 1. Virology 153:230–247
    [Google Scholar]
  14. Grose C., Edwards D. P., Friedrichs W. E., Weigle K. A., McGuire W. L. 1983; Monoclonal antibodies against three major glycoproteins of varicella-zoster virus. Infection and Immunity 40:381–388
    [Google Scholar]
  15. Ito M., Ihara T., Grose C., Starr S. 1985; Human leukocytes kill varicella-zoster virus-infected fibroblasts in the presence of murine monoclonal antibodies to virus-specific glycoproteins. Journal of Virology 54:98–103
    [Google Scholar]
  16. Keller P. M., Neff B. J., Ellis B. W. 1984; Three major glycoprotein genes of varicella-zoster virus whose products have neutralization epitopes. Journal of Virology 52:293–297
    [Google Scholar]
  17. Keller P. M., Davison A. J., Lowe R. S., Riemen M. W., Ellis R. W. 1987; Identification and sequence of the gene encoding gpIII, a major glycoprotein of varicella-zoster virus. Virology 157:526–533
    [Google Scholar]
  18. Khazaeli M. B., Saleh M. N., Wheeler R. H., Huster W. J., Holden H., Carrano R., LoBuglio A. F. 1988; Phase I trial of multiple large doses of murine monoclonal antibodies C017-1A. II. Pharmacokinetics and immune response. Journal of the National Cancer Institute 80:937–942
    [Google Scholar]
  19. Kohl S., Strynadka N. C. J., Hodges R. S., Pereira L. 1990; Analysis of the role of antibody-dependent cellular cytotoxic antibody activity in murine neonatal herpes simplex virus infection with antibodies to synthetic peptides of glycoprotein D and monoclonal antibodies to glycoprotein B. Journal of Clinical Investigation 86:273–278
    [Google Scholar]
  20. Larkin M., Heckels J. E., Ogilvie M. M. 1985; Antibody response to varicella-zoster virus surface glycoproteins in chicken pox and shingles. Journal of General Virology 66:1785–1793
    [Google Scholar]
  21. Ljungman P., Lönnqvist B., Gahrton G., Ringdén O., Sundqvist V., Wahren B. 1986; Clinical and subclinical reactivations of varicella-zoster virus in immunocompromised patients. Journal of Infectious Diseases 153:840–847
    [Google Scholar]
  22. McGeoch D. J., Davison A. J. 1986; DNA sequence of the herpes simplex virus type 1 gene encoding glycoprotein gH, and identification of homologues in the genomes of varicella-zoster virus and Epstein–Barr virus. Nucleic Acids Research 14:4281–4292
    [Google Scholar]
  23. Masuho Y. 1988; Human monoclonal antibodies: prospects for use as passive immunotherapy. Serodiagnosis and Immunotherapy 2:319–340
    [Google Scholar]
  24. Masuho Y., Sugano T., Matsumoto Y., Sawada S., Tomibe K. 1986; Generation of hybridomas producing human monoclonal antibodies against herpes simplex virus after in vitro stimulation. Biochemical and Biophysical Research Communications 135:495–500
    [Google Scholar]
  25. Masuho Y., Matsumoto Y. -I., Sugano T., Fujinaga S., Minamishima Y. 1987; Human monoclonal antibodies neutralizing human cytomegalovirus. Journal of General Virology 68:1457–1461
    [Google Scholar]
  26. Matsumoto Y., Sugano T., Miyamoto C., Masuho Y. 1986; Establishment of hybridomas producing human monoclonal antibodies against human cytomegalovirus. Biochemical and Biophysical Research Communications 137:273–280
    [Google Scholar]
  27. Miller E., Cradock-Watson J. E., Ridehalgh M. K. S. 1989; Outcome in newborn-babies given anti-varicella-zoster immunoglobulin after perinatal maternal infection with varicella-zoster virus. Lancet ii:371–373
    [Google Scholar]
  28. Myers M. G., Duer H. L., Hausler C. K. 1980; Experimental infection of guinea-pigs with varicella-zoster virus. Journal of Infectious Diseases 142:414–420
    [Google Scholar]
  29. Oakes J. E., Lausch R. N. 1984; Monoclonal antibodies suppress replication of herpes simplex virus type 1 in trigeminal ganglia. Journal of Virology 51:656–661
    [Google Scholar]
  30. Okada N., Harada R., Fujita T., Okada H. 1989; A novel membrane glycoprotein capable of inhibiting membrane attack by homologous complement. International Immunology 1:205–208
    [Google Scholar]
  31. Orenstein W. A., Heymann D. L., Ellis R. J., Rosenberg R. L., Nakano J., Halsey N. A., Overture G. D., Hayden G. F., Witte J. J. 1981; Prophylaxis of varicella in high risk children: dose-response effect of zoster immune globulin. Journal of Pediatrics 98:368–373
    [Google Scholar]
  32. Paryani S. G., Arvin A. M., Koropchak C. M., Dobkin M. B., Wittek A. E., Budinger M. D. 1984; Comparison of varicella zoster antibody titers in patients given intravenous immune serum globulin or varicella zoster immune globulin. Journal of Pediatrics 105:200–205
    [Google Scholar]
  33. Robinson W. E. Jr Kawamura T., Lake D., Masuho Y., Mitchell W. M., Hersh E. M. 1990; Antibodies to the primary immunodominant domain of human immunodeficiency virus type 1 (HIV-1) glycoprotein gp41 enhance HIV-1 infection in vitro. Journal of Virology 64:5301–5305
    [Google Scholar]
  34. Soike K. F., Keller P. M., Ellis R. W. 1987; Immunization of monkeys with varicella-zoster virus glycoprotein antigens and their response to challenge with simian varicella virus. Journal of Medical Virology 22:307–313
    [Google Scholar]
  35. Srinivasappa J., Saegusa J., Prabhakar B. S., Gentry M. K., Buchmeier M. J., Wiktor T. J., Koprowski H., Oldstone M. B. A., Notkins A. L. 1986; Molecular mimicry: frequency of reactivity of monoclonal antiviral antibodies with normal tissues. Journal of Virology 57:397–401
    [Google Scholar]
  36. Sugano T., Matsumoto Y., Miyamoto C., Masuho Y. 1987; Hybridomas producing human monoclonal antibodies against varicella-zoster virus. European Journal of Immunology 17:359–364
    [Google Scholar]
  37. Zaia J. A., Levin M. J., Preblud S. R., Leszczynski J., Wright G. G., Ellis R. J., Curtis A. C., Valerio M. A., LeGore J. 1983; Evaluation of varicella-zoster immune globulin: protection of immunosuppressed children after household exposure to varicella. Journal of Infectious Diseases 147:737–743
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-9-2065
Loading
/content/journal/jgv/10.1099/0022-1317-72-9-2065
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error