1887

Abstract

The complete sequence of the tomato spotted wilt virus (TSWV) M RNA segment has been determined. The RNA is 4821 nucleotides long and has an ambisense coding strategy similar to that of the S RNA segment. The M RNA segment contains two open reading frames (ORFs), one in the viral sense which encodes a protein with a predicted size of 33.6K, and one in the viral complementary sense which encodes the precursor to the G1 and G2 glycoproteins, with a predicted size of 127.4K. Both ORFs are expressed via the synthesis of subgenomic mRNAs that possibly terminate at a stable hairpin structure, located in the intergenic region. The precursor for the glycoproteins contains a sequence motif (RGD) which is characteristic of cellular attachment domains. Significant sequence homology was found between the G1 glycoproteins of members of the genus Bunyavirus and a corresponding region in the glycoprotein precursor of TSWV, indicating a close evolutionary relationship between these viruses. With the elucidation of the M RNA sequence, the complete nucleotide sequence of TSWV has been determined. TSWV represents the first member of the Bunyaviridae shown to contain two ambisense RNA segments.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-11-2795
1992-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/11/JV0730112795.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-11-2795&mimeType=html&fmt=ahah

References

  1. Bailey J. M., Davidson N. 1976; Methylmercury as a reversible denaturing agent for agarose gel electrophoresis. Analytical Biochemistry 70:75–85
    [Google Scholar]
  2. Cho J. J., Mau R. F. L., Mitchell W. C., Gonsalves D., Yudin L. S. 1987; Host list of plants susceptible to tomato spotted wilt virus (TSWV). Research Extension Series Honolulu: University of Hawaii;
    [Google Scholar]
  3. Collett M. S., Purchio A. F., Keegan K., Frazier S., Hays W., Anderson D. K., Parker M. D., Schmaljohn C., Schmidt J., Dalrymple J. M. 1985; Complete nucleotide sequence of the M RNA segment of Rift Valley fever virus. Virology 144:228–245
    [Google Scholar]
  4. De Ávila A. C., Huguenot C., Resende R., de O., Kitajima E. W., Goldbach R. W., Peters D. 1990; Serological differentiation of 20 isolates of tomato spotted wilt virus. Journal of General Virology 71:2801–2807
    [Google Scholar]
  5. De Haan P., Wagemakers L., Peters D., Goldbach R. 1989; Molecular cloning and terminal sequence determination of the S and M RNAs of tomato spotted wilt virus. Journal of General Virology 70:3469–3473
    [Google Scholar]
  6. de Haan P., Wagemakers L., Peters D., Goldbach R. 1990; The S RNA segment of tomato spotted wilt virus has an ambisense character. Journal of General Virology 71:1001–1007
    [Google Scholar]
  7. de Haan P., Kormelink R., Resende R., de O., van Poelwijk F., Peters D., Goldbach R. 1991; Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. Journal of General Virology 72:2207–2216
    [Google Scholar]
  8. de Haan P., de Avila A. C., Kormelink R., Westerbroek A., Gielen J. J. L., Peters D., Goldbach R. 1992; The nucleotide sequence of the S RNA of Impatiens necrotic spot virus, a novel tospovirus. FEBS Letters (in press)
    [Google Scholar]
  9. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  10. Devos R. G. E., Gillis E., Fiers W. 1976; The enzymatic addition of poly(A) to the 3′ end of RNA using bacteriophage MS2 RNA as a model system. European Journal of Biochemistry 62:401–410
    [Google Scholar]
  11. De Vries S. C., Springer J., Wessels J. G. H. 1982; Diversity of abundant mRNA sequences and patterns of protein synthesis in etiolated and greened pea seedlings. Planta 156:129–135
    [Google Scholar]
  12. D’Souza S. E., Ginsberg M. H., Burke T. A., Lam S. C.-T., Plow E. F. 1988; Localization of an Arg-Gly-Asp recognition site within an integrin adhesion receptor. Science 242:91–93
    [Google Scholar]
  13. Elliott R. M. 1990; Molecular biology of the Bunyaviridae. Journal of General Virology 71:501–522
    [Google Scholar]
  14. Eshita Y., Bishop D. H. L. 1984; The complete sequence of the M RNA of snowshoe hare bunyavirus reveals the presence of internal hydrophobic domains in the viral glycoprotein. Virology 137:227–240
    [Google Scholar]
  15. Francki R. I. B., Fauquet C. M., Knudson D. L., Brown F. 1991; Classification and nomenclature of viruses: fifth report of the International Committee on Taxonomy of Viruses. Archives of Virology supplementum 2
    [Google Scholar]
  16. Giorgi C., Accardi L., Nicoletti L., Gro M. C., Takehara K., Hilditch C., Morikawa S., Bishop D. H. L. 1991; Sequences and coding strategies of the S RNAs of Toscana and Rift Valley fever viruses compared to those of Punta Toro, Sicilian sandfly fever, and Uukuniemi viruses. Virology 180:738–753
    [Google Scholar]
  17. Grady L. J., Sanders M. L., Campbell W. P. 1987; The sequence of the M RNA of an isolate of La Crosse virus. Journal of General Virology 68:3057–3071
    [Google Scholar]
  18. Gubler U., Hoffman B. J. 1983; A simple and very efficient method for generating cDNA libraries. Gene 25:263–269
    [Google Scholar]
  19. Hopp T. P., Woods K. R. 1981; Prediction of protein antigenic determinants from amino acid sequences. Proceedings of the National Academy of Sciences, U.S.A. 78:3824–3828
    [Google Scholar]
  20. Ie T. S. 1982; A sap-transmissible, defective form of tomato spotted wilt virus in plant cells. Virology 59:387–391
    [Google Scholar]
  21. Ihara T., Akashi H., Bishop D. H. L. 1984; Novel coding strategy (ambisense genomic RNA) revealed by sequence analyses of Punta Toro phlebovirus S RNA. Virology 136:293–306
    [Google Scholar]
  22. Ihara T., Schmidt J., Dalrymple J. M., Bishop D. H. L. 1985; Complete sequences of the glycoproteins and M RNA of Punta Toro phlebovirus compared to those of Rift Valley fever virus. Virology i44:246–259
    [Google Scholar]
  23. Kormelink R., Kitajima E. W., de Haan P., Zuidema D., Peters D., Goldbach R. 1991; The nonstructural protein (NSs) encoded by the ambisense S RNA segment of tomato spotted wilt virus is associated with fibrous structures in infected plant cells. Virology 181:459–468
    [Google Scholar]
  24. Kormelink R., de Haan P., Peters D., Goldbach R. 1992a; Viral RNA synthesis in tomato spotted wilt virus-infected Nicotiana rustica plants. Journal of General Virology 73:687–693
    [Google Scholar]
  25. Kormelink R., van Poelwijk F., Peters D., Goldbach R. 1992b; Non-viral heterogeneous sequences at the 5′ ends of tomato spotted wilt virus mRNAs. Journal of General Virology 73:2125–2128
    [Google Scholar]
  26. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  27. Law M. D., Speck J., Moyer J. W. 1992; The M RNA of Impatiens necrotic spot tospovirus (Bunyaviridae) has an ambisense genomic organization. Virology 188:732–741
    [Google Scholar]
  28. Lees J. F., Pringle C. R., Elliott R. M. 1986; Nucleotide sequence of the Bunyamwera virus M RNA segment: conservation of structural features in the bunyavirus glycoprotein gene product. Virology 148:1–14
    [Google Scholar]
  29. Marriott A. C., Ward V. K., Nuttall P. A. 1989; The S RNA segment of sandfly fever Sicilian virus: evidence for an ambisense genome. Virology 169:341–345
    [Google Scholar]
  30. Mohamed N. A. 1981; Isolation and characterization of subviral structures from tomato spotted wilt virus. Journal of General Virology 53:197–206
    [Google Scholar]
  31. Mohamed N. A., Randles J. W., Francki R. I. B. 1973; Protein composition of tomato spotted wilt virus. Virology 56:12–21
    [Google Scholar]
  32. Paliwal Y. C. 1974; Some properties and thrips transmission of tomato spotted wilt virus in Canada. Canadian Journal of Botany 52:1177–1182
    [Google Scholar]
  33. Pardigon N., Vialat P., Gerbaud S., Girard M., Bouloy M. 1988; Nucleotide sequence of the M segment of Germiston virus: comparison of the M gene product of several bunyaviruses. Virus Research 11:73–85
    [Google Scholar]
  34. Peters D., de Ávila A. C., Kitajima E. W., Resende R. de O., de Haan P., Goldbach R. 1991; An overview of tomato spotted wilt virus. In Virus–Thrips–Plant Interactions of TSWV, Proceedings of USD A Workshop, Beltsville, U. S. A. pp. 1–14 Hsu H.-T., Lawson R. H. Springfield: National Technology Information Service;
    [Google Scholar]
  35. Pierschbacher M. D., Ruoslahti E. 1984; Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, London 309:30–33
    [Google Scholar]
  36. Resende R. de O., De Haan P., de Avila A. C., Kitajima E. W., Kormelink R., Goldbach R., Peters D. 1991; Generation of envelope and defective interfering RNA mutants of tomato spotted wilt virus by mechanical passage. Journal of General Virology 72:2375–2383
    [Google Scholar]
  37. Rönnholm R., Pettersson R. F. 1987; Complete nucleotide sequence of the M RNA segment of Uukuniemi virus encoding the membrane glycoproteins G1 and G2. Virology 160:191–202
    [Google Scholar]
  38. Ruoslahti E., Pierschbacher M. D. 1986; Arg-Gly-Asp: a versatile cell recognition signal. Cell 44:517–518
    [Google Scholar]
  39. Ruoslahti E., Pierschbacher M. D. 1987; New perspectives in cell adhesion: RGD and integrins. Science 238:491–497
    [Google Scholar]
  40. Sakimura K. 1962; The present status of thrips-borne viruses. In Biological Transmission of Disease Agents pp. 33–40 Edited by Maramorosch K. New York: Academic Press;
    [Google Scholar]
  41. Sanders L. C., Wang C.-S., Walling L. L., Lord E. M. 1991; A homolog of the substrate adhesion molecule vitronectin occurs in four species of flowering plants. Plant Cell 3:629–635
    [Google Scholar]
  42. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A. 74:5463–5467
    [Google Scholar]
  43. Schindler M., Meiners S., Cheresh D. A. 1989; RGD-dependent linkage between plant cell wall and plasma membrane:consequences for growth. Journal of Cellular Biology 108:1955–1965
    [Google Scholar]
  44. Schmaljohn C. S., Schmaljohn A. L., Dalrymple J. M. 1987; Hantaan virus M RNA: coding strategy, nucleotide sequence, and gene order. Virology 157:31–39
    [Google Scholar]
  45. Simons J. F., Hellman U., Pettersson R. F. 1990; Uukuniemi virus S RNA segment: ambisense coding strategy, packaging of complementary strands into virions, and homology to members of the genus phlebovirus. Journal of Virology 64:247–255
    [Google Scholar]
  46. Tas P. W. L., Boerjan M. L., Peters D. 1977; The structural proteins of tomato spotted wilt virus. Journal of General Virology 36:267–279
    [Google Scholar]
  47. Van den Hurk J., Tas P. W. L., Peters D. 1977; The ribonucleic acid of tomato spotted wilt virus. Journal of General Virology 36:81–91
    [Google Scholar]
  48. Verkleij F. N., Peters D. 1983; Characterization of a defective form of tomato spotted wilt virus. Journal of General Virology 64:677–686
    [Google Scholar]
  49. Von Heijne G. 1986; A new method for predicting signal sequence cleavage sites. Nucleic Acids Research 14:4683–4690
    [Google Scholar]
  50. Zhang H., Scholl R., Browse J., Somerville C. 1988; Double stranded DNA sequencing as a choice for DNA sequencing. Nucleic Acids Research 16:1220
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-11-2795
Loading
/content/journal/jgv/10.1099/0022-1317-73-11-2795
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error