1887

Abstract

The first 3000 nucleotides from the 3′ end of the Marburg virus (MBG) genome were determined from cDNA clones produced from genomic RNA and mRNA. Identified in the sequence was a short putative leader sequence at the extreme 3′ end, followed by the complete nucleoprotein (NP) gene. The 5′ end of the NP mRNA was determined as was the polyadenylation site for the NP gene. The transcriptional start (3′ UUCUUCUUAUAAUU.) and termination (3′ .UAAUUCUUUUU) signals of the MBG NP gene are very similar to those seen with Ebola virus (EBO). In comparison to other non-segmented negative-strand RNA viruses, filovirus transcriptional signals are most similar to members of the Paramyxovirus and Morbillivirus genera. translation of a run-off transcript containing the entire MBG NP coding region produced an authentic NP. Sequence comparisons of the 3′ end of the MBG and EBO genomes revealed weak nucleotide sequence similarity, but the predicted sequence of the first 400 amino acids of these viruses showed a high degree. This homology is encoded in divergent nucleotide sequences through different codon usages and substitutions of similar amino acids. A small region in the middle of the MBG and EBO NP sequences was found to contain a significant amino acid homology with NPs of paramyxoviruses and to a lesser extent with rhabdoviruses. Specific sites of conserved sequence are contained in hydrophobic domains and may have a common function. Alignments of the entire NP amino acid sequences of these viruses also suggest that filoviruses are more closely related to paramyxoviruses than to rhabdoviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-2-347
1992-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/2/JV0730020347.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-2-347&mimeType=html&fmt=ahah

References

  1. Banerjee A. K., Rhodes D. P., Gill S. S. 1984; Complete nucleotide sequence of the mRNA coding for the N protein of vesicular stomatitis virus (New Jersey serotype). Virology 137:432–438
    [Google Scholar]
  2. Barik S., Rud E. W., Luk D., Banerjee A. K., Kang C. Y. 1990; Nucleotide sequence analysis of the L gene of vesicular stomatitis virus (New Jersey serotype): identification of conserved domains in L proteins of nonsegmented negative-strand RNA viruses. Virology 175:332–337
    [Google Scholar]
  3. Barr J., Chambers P., Pringle C. R., Easton A. J. 1991; Sequence of the major nucleocapsid protein gene of pneumonia virus of mice : sequence comparisons suggest structural homology between nucleocapsid proteins of pneumoviruses, paramyxoviruses, rhabdoviruses and filoviruses. Journal of General Virology 72:677–685
    [Google Scholar]
  4. Blumberg B. M., Crowley J. C., Silverman J. I., Menonna J., Cook S. D., Dowling P. C. 1988; Measles virus L protein evidences elements of ancestral RNA polymerase. Virology 164:487–497
    [Google Scholar]
  5. Centers for Disease Control 1989; Ebola virus infection in imported primates – Virginia 1989. Morbidity and Mortality Weekly Report 38:831–838
    [Google Scholar]
  6. Collins P. L., Anderson K., Langer S. J., Wertz G. W. 1985; Correct sequence for the major nucleocapsid protein mRNA of respiratory syncytial virus. Virology 146:69–77
    [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  8. Elango N. 1989; The mumps virus nucleocapsid mRNA sequence and homology among the paramyxoviridae proteins. Virus Research 12:77–86
    [Google Scholar]
  9. Elliott L. H., Kiley M. P., McCormick J. B. 1985; Descriptive analysis of Ebola virus proteins. Virology 147:169–176
    [Google Scholar]
  10. Feldmann H., Will C., Schikore M., Slenczka W., Klenk H.-D. 1991; Glycosylation and oligomerization of the spike protein of Marburg virus. Virology 182:353–356
    [Google Scholar]
  11. Galinski M. S., Mink T. A., Lambert D. M., Wechsler S. L., Pons M. W. 1986; Molecular cloning and sequence analysis of the human parainfluenza 3 virus RNA encoding the nucleocapsid protein. Virology 149:139–151
    [Google Scholar]
  12. Galinski M. S., Mink M. A., Pons M. W. 1988; Molecular cloning and sequence analysis of the human parainfluenza 3 virus gene encoding the L protein. Virology 165:499–510
    [Google Scholar]
  13. Gallione C. J., Green J. R., Iverson L. E., Rose J. K. 1981; Nucleotide sequences of the mRNA’s encoding the vesicular stomatitis virus N and NS proteins. Journal of Virology 39:529–535
    [Google Scholar]
  14. Gear J. S. S., Cassel G. A., Gear A. J., Trappler B., Clausen L., Meyers A. M., Kew M. C., Bothwell T. H., Sher R., Miller G. B., Schneider J., Koornhoff H. J., Gomperts E. D., Issacson M., Gear J. H. S. 1975; Outbreak of Marburg virus disease in Johannesburg. British Medical Journal 4:489–493
    [Google Scholar]
  15. Gill D. S., Taxai S., Portner A., Kingsbury D. W. 1988; Mapping of antigenic domains of Sendai virus nucleocapsid protein expressed in Escherichia coli. Journal of Virology 62:4805–4808
    [Google Scholar]
  16. Giorgi C., Blumberg B., Kolakofsky D. 1983; Sequence determination of the (+) leader RNA regions of the vesicular stomatitis virus Chandipura, Cocal, and Piry serotype genomes. Journal of Virology 46:125–130
    [Google Scholar]
  17. Gubler U., Hoffman B. J. 1983; A simple and very efficient method for generating cDNA libraries. Gene 25:263–269
    [Google Scholar]
  18. Gupta K. C., Kingsbury D. W. 1982; Conserved polyadenylation signals in two negative-strand RNA virus families. Virology 120:518–523
    [Google Scholar]
  19. Heggeness M. H., Scheid A., Choppin P. W. 1981; The relationship of conformational changes in the Sendai virus nucleocapsid to proteolytic cleavage of the NP polypeptide. Virology 114:555–562
    [Google Scholar]
  20. Ishida N., Taira H., Omata T., Mizumoto K., Hattori S., Iwasaki K., KaWakita M. 1986; Sequence of 2617 nucleotides from the 3′ end of Newcastle disease virus genome RNA and the predicted amino acid sequence of viral NP protein. Nucleic Acids Research 14:6551–6564
    [Google Scholar]
  21. Jahrling R. B., Geisbert T. W., Dalgard D. W., Johnson E. D., Ksiazek T. G., Hall W. C., Peters C. J. 1990; Preliminary report: isolation of Ebola virus from monkeys imported to USA. Lancet (i) or (ii)502–505
    [Google Scholar]
  22. Jambou R. C., Elango N., Venkatesan S., Collins P. L. 1986; Complete sequence of the major nucleocapsid protein gene of human parainfluenza type 3 virus : comparison with other negative strand viruses. Journal of General Virology 67:2543–2548
    [Google Scholar]
  23. Kiley M. P., Wilusz J., McCormick J. B., Keene J. D. 1986; Conservation of the 3′ terminal nucleotide sequences of Ebola and Marburg virus. Virology 149:251–254
    [Google Scholar]
  24. Kiley M. P., Cox N. J., Elliott L. H., Sanchez A., DeFries R., Buchmeier M. J., Richman D. D., McCormick J. B. 1988; Physicochemical properties of Marburg virus: evidence for three distinct virus strains and their relationship to Ebola virus. Journal of General Virology 69:1957–1967
    [Google Scholar]
  25. Kondo K., Bando H., Kawano M., Tsurudome M., Komada H., Nishio M., Ito Y. 1990; Sequencing analysis and comparison of parainfluenza virus type 4A and 4B NP protein genes. Virology 174:1–8
    [Google Scholar]
  26. Kozak M. 1986; Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292
    [Google Scholar]
  27. Kurilla M. G., Stone H. O., Keene J. D. 1985; RNA sequence and transcriptional properties of the 3′ end of the Newcastle disease virus genome. Virology 145:203–212
    [Google Scholar]
  28. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  29. Lyn D., Gill D. S., Scroggs R. A., Portner A. 1991; The nucleoproteins of human parainfluenza virus type 1 and Sendai virus share amino acid sequences and antigenic and structural determinants. Journal of General Virology 72:983–987
    [Google Scholar]
  30. Martini G., Siegert R. (editors) 1971 Marburg Virus Disease Wien & New York: Springer-Verlag;
    [Google Scholar]
  31. Matsuoka Y., Ray R. 1991; Sequence analysis and expression of the human parainfluenza type 1 virus nucleoprotein gene. Virology 181:403–407
    [Google Scholar]
  32. Maxam A. M., Gilbert W. 1980; Sequencing end–labeled DNA with base–specific chemical cleavages. Methods in Enzymology 65:499–560
    [Google Scholar]
  33. Morgan E. M. 1991; Evolutionary relationships of paramyxovirus nucleocapsid–associated proteins. In The Paramyxoviruses pp 163–179 Edited by Kingsbury D. W. New York & London: Plenum Press;
    [Google Scholar]
  34. Morgan E. M., Re G. G., Kingsbury D. W. 1984; Complete sequence of the Sendai virus NP gene from a cloned insert. Virology 135:279–287
    [Google Scholar]
  35. Needleman S. B., Wunsch C. D. 1970; A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48:443–453
    [Google Scholar]
  36. Pringle C. R. 1991; The order Mononegavirales. Archives of Virology 117:137–140
    [Google Scholar]
  37. Richardson J. H., Barkley W. E. 1988 Biosafety in Microbiological and Biomedical Laboratories USPH, CDC. HHS Publication no 88–8395
    [Google Scholar]
  38. Rima B. K. 1989; Comparison of amino acid sequences of the major structural proteins of the paramyxo- and morbilliviruses. In Genetics and Pathogenicity of Negative-strand Viruses pp 254–263 Edited by Mahy B. W. J., Kolakofsky D. Amsterdam: Elsevier;
    [Google Scholar]
  39. Rosen J. M., Woo S. L. C., Holder J. W., Means A. T., O’Malley B. 1975; Preparation and preliminary characterization of purified ovalbumin messenger RNA from the hen oviduct. Biochemistry 14:69–78
    [Google Scholar]
  40. Rozenblatt S., Eisenberg O., Ben-Levy R., LaVie V., Bellini W. J. 1985; Sequence homology within the morbilliviruses. Journal of Virology 53:684–690
    [Google Scholar]
  41. Sakai Y., Suzu S., Shioda T., Shibuta H. 1987; Nucleotide sequence of the bovine parainfluenza 3 virus genome: its 3′ end and the genes of NP, P, C and M proteins. Nucleic Acids Research 15:2927–2944
    [Google Scholar]
  42. Sanchez A., Kiley M. P. 1987; Identification and analysis of Ebola virus messenger RNA. Virology 157:414–420
    [Google Scholar]
  43. Sánchez A., Banerjee A. K., Furuichi Y., Richardson M. A. 1986; Conserved structures among the nucleocapsid proteins of the Paramyxoviridae: complete nucleotide sequence of human parainfluenza virus type 3 NP mRNA. Virology 152:171–180
    [Google Scholar]
  44. Sanchez A., Kiley M. P., Holloway B. P., McCormick J. B., Auperin D. D. 1989; The nucleoprotein gene of Ebola virus: cloning, sequencing, and in vitro expression. Virology 170:81–91
    [Google Scholar]
  45. Sanger R., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 74:5463–5467
    [Google Scholar]
  46. Smith D. H., Johnson B. K., Isaacson M., Swanapoel R., Johnson K. M., Kiley M., Bagshawe A., Siongok T., Keruga W. K. 1982; Marburg-virus disease in Kenya. Lancet i:816–820
    [Google Scholar]
  47. Stec D. S., Hill M. G., Collins P. L. 1991; Sequence analysis of the polymerase L gene of human respiratory syncytial virus and predicted phylogeny of nonsegmented negative-strand viruses. Virology 183:273–287
    [Google Scholar]
  48. Tanabayashi K., Takeuchi K., Hishiyama M., Yamada A., Tsurudome M., Ito Y., Sugiura A. 1990; Nucleotide sequence of the leader and nucleocapsid protein gene of mumps virus and epitope mapping with the in vitro expressed nucleocapsid protein. Virology 177:124–130
    [Google Scholar]
  49. Tordo N., Poch O., Ermine A., Keith G. 1986; Primary structure of leader RNA and nucleoprotein genes of the rabies genome: segmented homology with VSV. Nucleic Acids Research 14:2671–2683
    [Google Scholar]
  50. Tordo N., Poch O., Ermine A., Keith G., Rougeon F. 1988; Completion of the rabies virus genome sequence determination: highly conserved domains among the L (polymerase) proteins of unsegmented negative-strand RNA viruses. Virology 165:565–576
    [Google Scholar]
  51. Vidal S., Kolakofsky D. 1989; Modified model for the switch from Sendai virus transcription to replication. Journal of Virology 63:1951–1958
    [Google Scholar]
  52. Zimmern D., Kaesberg P. 1978; 3′-Terminal nucleotide sequence of encephalomyocarditis virus RNA determined by reverse transcriptase and chain–terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 75:4275–4261
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-2-347
Loading
/content/journal/jgv/10.1099/0022-1317-73-2-347
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error