1887

Abstract

Cytotoxic T (Tc) cells were generated in mice of five H-2 haplotypes against the flaviviruses Kunjin and West Nile (WNV). A panel of recombinant vaccinia viruses which between them expressed cDNA of the entire Kunjin virus genome were used to infect targets. Anti-Kunjin virus responses to determinants derived from non-structural proteins, especially NS3, NS4A and NS4B, were dominant in most mouse strains; usually only one class I major histocompatibility complex (MHC) restriction element was involved. WNV-immune Tc cells showed similar but not identical patterns of antigen recognition to Kunjin virus-immune Tc cells. The extent to which WNV-immune Tc cells recognized Kunjin virus-encoded determinants varied considerably between mice of different MHC haplotypes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-5-1115
1992-05-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/5/JV0730051115.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-5-1115&mimeType=html&fmt=ahah

References

  1. Bhatt P. N., Jacoby R. O. 1976; Genetic resistance to lethal flavivirus encephalitis. II. Effect of immunosuppression. Journal of Infectious Diseases 134:166–173
    [Google Scholar]
  2. Bukowski J. F., Kurane I., Lai C. J., Bray M., Falgout B., Ennis F. A. 1989; Dengue virus-specific cross-reactive CD8+ human cytotoxic T lymphocytes. Journal of Virology 63:5086–5089
    [Google Scholar]
  3. Chambers T. J., Weir R. C., Grakoui A., McCourt D. W., Bazan J. F., Fletterick R. J., Rice C. M. 1990; Evidence that the N-terminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein. Proceedings of the National Academy of Sciences, U.S.A. 87:8898–8902
    [Google Scholar]
  4. Coia G., Parker M. D., Speight G., Byrne M. E., Westaway E. G. 1988; Nucleotide and complete amino acid sequences of Kunjin virus: definitive gene order and characteristics of the virus-specified proteins. Journal of General Virology 69:1–21
    [Google Scholar]
  5. Cole G. A., Nathanson N., Prendergast R. A. 1972; Requirement for theta bearing cells in lymphocytic choriomeningitis. Nature, London 238:335–337
    [Google Scholar]
  6. Fagbami A., Halstead S. B., Marchette N., Larsen K. 1988; Heterologous flavivirus infection-enhancing antibodies in sera of Nigerians. American Journal of Tropical Medicine and Hygeine 38:205–277
    [Google Scholar]
  7. Hotta H., Murakami T., Miyasaki K., Takeda Y., Shirane H., Hotta S. 1981; Inoculation of dengue virus into nude mice. Journal of General Virology 52:71–76
    [Google Scholar]
  8. Kesson A. M., Blanden R. V., Müllbacher A. 1987; The primary in vivo murine cytotoxic T cell response to the flavivirus, West Nile. Journal of General Virology 68:2001–2006
    [Google Scholar]
  9. Kesson A. M., Blanden R. V., Müllbacher A. 1988; The secondary in vitro murine cytotoxic T cell response to the flavivirus, West Nile. Immunology and Cell Biology 66:23–32
    [Google Scholar]
  10. Kurane L., Meager A., Ennis F. A. 1989; Dengue virus-specific human T cell clones. Serotype crossreactive proliferation, interferon gamma production, and cytotoxic activity. Journal of Experimental Medicine 170:763–775
    [Google Scholar]
  11. Kurane L., Brinton M. A., Samson A. L., Ennis F. A. 1991; Dengue virus-specific, human CD4+ CD8 cytotoxic T-cell clones: multiple patterns of virus cross-reactivity recognized by NS3-specific T-cell clones. Journal of Virology 65:1823–1828
    [Google Scholar]
  12. Mathur A., Arora K. L., Chaturvedi U. C. 1983; Host defence mechanisms against Japanese encephalitis virus infection in mice. Journal of General Virology 64:805–811
    [Google Scholar]
  13. Monath T. P. 1988; Pathobiology of flaviviruses. In The Togaviridae and Flaviviridae pp 375–440 Edited by Schlesinger S., Schlesinger M. J. New York & London: Plenum Press;
    [Google Scholar]
  14. Müllbacher A., Blanden R. V. 1979; Cross-reactivity patterns of murine cytotoxic T lymphocytes. Cellular Immunology 43:70–81
    [Google Scholar]
  15. Müllbacher A., Marshall I. D., Ferris P. 1986; Classification of Barmah Forest virus as an alphavirus using cytotoxic T cell assays. Journal of General Virology 67:295–299
    [Google Scholar]
  16. Oehen S., Hengartner H., Zinkernagel R. M. 1991; Vaccination for disease. Science 251:195–198
    [Google Scholar]
  17. Pang T., Wong P. Y., Pathmanathan R. 1982; Induction and characterization of delayed-type hypersensitivity to dengue virus in mice. Journal of Infectious Diseases 146:235–242
    [Google Scholar]
  18. Parrish C. R., Coia G., Hill A. B., Müllbacher A., Westaway E. G., Blanden R. V. 1991; Preliminary analysis of murine cytotoxic T cell responses to the proteins of the flavivirus Kunjin using vaccinia virus expression. Journal of General Virology 72:1645–1653
    [Google Scholar]
  19. Rice C. M., Lenches E. M., Eddy S. R., Shin S. E., Sheets R. L., Strauss J. H. 1985; Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–733
    [Google Scholar]
  20. Taylor W. P., Marshall I. D. 1975; Adaptation studies with Ross River virus: laboratory mice and cell cultures. Journal of General Virology 28:59–72
    [Google Scholar]
  21. Uren M. F., Doherty P. C., Allan J. E. 1987; Flavivirus-specific murine L3T4+ T cell clones: induction, characterization and cross-reactivity. Journal of General Virology 68:2655–2663
    [Google Scholar]
  22. Warren H. S., Pembury R. G. 1981; A method for the production and quantitative assay of human lymphokine preparations. Journal of Immunological Methods 41:9–21
    [Google Scholar]
  23. Westaway E. G., Brinton M. A., Gaidamovich S. Y., Horzinek M. C., Igarashi A., Kääriäinen L., Lvov D. K., Porterfield J. S., Russell P. K., Trent D. W. 1985; Flaviviridae. Intervirology 24:183–192
    [Google Scholar]
  24. Zweernink H. J., Courtneidge S. A., Skehel J. J., Crumpton M. J., Askonas B. A. 1977; Cytotoxic T-cells kill influenza virus infected cells but do not distinguish between serologically distinct type A viruses. Nature, London 267:354–356
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-5-1115
Loading
/content/journal/jgv/10.1099/0022-1317-73-5-1115
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error