1887

Abstract

The gene encoding the fusion (F) glycoprotein of pneumonia virus of mice consists of 1657 bases and contains an open reading frame encoding 537 amino acids which is more similar to the F proteins of pneumoviruses than to those of other paramyxoviruses. Computer-assisted sequence analyses can be combined with data on the antigenicity of various F proteins to suggest a possible arrangement of secondary structure elements common to all pneumovirus and paramyxovirus F proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-7-1717
1992-07-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/7/JV0730071717.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-7-1717&mimeType=html&fmt=ahah

References

  1. Barr J., Chambers P., Pringle C. R., Easton A. J. 1991; Sequence of the major nucleocapsid protein gene of pneumonia virus of mice: sequence comparisons suggest structural homology between nucleocapsid proteins of pneumoviruses, paramyxoviruses, rhabdo-viruses and filoviruses. Journal of General Virology 72:677–685
    [Google Scholar]
  2. Bourgeois C., Corvaisier C., Bour J. B., Kohli E., Pothier P. 1991; Use of synthetic peptides to locate neutralizing antigenic domains on the fusion protein of respiratory syncytial virus. Journal of General Virology 72:1051–1058
    [Google Scholar]
  3. Buckland R., Wild F. 1989; Leucine zipper motif extends. Nature, London 338:547
    [Google Scholar]
  4. Chambers P., Millar N. S., Emmerson P. T. 1986; Nucleotide sequence of the gene encoding the fusion glycoprotein of Newcastle disease virus. Journal of General Virology 67:2685–2694
    [Google Scholar]
  5. Chambers P., Barr J., Pringle C. R., Easton A. J. 1990a; Molecular cloning of pneumonia virus of mice. Journal of Virology 64:1869–1872
    [Google Scholar]
  6. Chambers P., Matthews D. A., Pringle C. R., Easton A. J. 1990b; The nucleotide sequences of intergenic regions between nine genes of pneumonia virus of mice establish the physical order of these genes in the viral genome. Virus Research 18:263–270
    [Google Scholar]
  7. Chambers P., Pringle C. R., Easton A. J. 1990c; Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. Journal of General Virology 71:3075–3080
    [Google Scholar]
  8. Chambers P., Pringle C. R., Easton A. J. 1991; Genes 1 and 2 of pneumonia virus of mice encode proteins which have little homology with the 1C and 1B proteins of human respiratory syncytial virus. Journal of General Virology 72:2545–2549
    [Google Scholar]
  9. Coelingh K. V. W., Tierney E. L. 1989; Identification of amino acids recognized by syncytium-inhibiting and neutralizing monoclonal antibodies to the human parainfluenza virus type 3 fusion protein. Journal of Virology 63:3755–3760
    [Google Scholar]
  10. Cohen C., Philips D. A. D. 1981; Spikes and fimbriae; a-helical proteins form surface projections on microorganisms. Proceedings of the National Academy of Sciences, U.S.A. 78:5303–5304
    [Google Scholar]
  11. Collins P. L., Huang Y. T., Wertz G. W. 1984; Nucleotide sequence of the gene encoding the fusion F glycoprotein of human respiratory syncytial virus. Proceedings of the National Academy of Sciences, U.S.A. 81:7683–7687
    [Google Scholar]
  12. Colman P. M., Varghese J. N., Laver W. G. 1983; Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature, London 303:41–44
    [Google Scholar]
  13. Eisenberg D., Schwarz E., Komaromy M., Wall R. 1984; Analysis of membrane and surface protein sequences with the hydrophobic moment plot. Journal of Molecular Biology 179:125–142
    [Google Scholar]
  14. Elango N., Satake M., Coligan J. E., Norrby E., Camargo E., Venkatesan S. 1985; Respiratory syncytial virus fusion glycoprotein: nucleotide sequence of mRNA, identification of cleavage activation site and amino acid sequence of N-terminus of F1 subunit. Nucleic Acids Research 13:1559–1574
    [Google Scholar]
  15. Francki R. I. B., Fauquet C. M., Knudson D. L., Brown F. 1991 Classification and Nomenclature of Viruses. Fifth Report of the International Committee on Taxonomy of Viruses New York & Wien: Springer-Verlag;
    [Google Scholar]
  16. Freymann D. M., Metcalf P., Turner M., Wiley D. C. 1984; 6Å resolution X-ray structure of a variable surface glycoprotein from Trypanosoma brucei. Nature, London 311:167–169
    [Google Scholar]
  17. Garnier J., Osguthorpe D. J., Robson B. 1978; Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. Journal of Molecular Biology 120:97–120
    [Google Scholar]
  18. Higgins D. G., Sharp P. M. 1988; CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244
    [Google Scholar]
  19. Homma M., Ohuchi M. 1973; Trypsin action on the growth of Sendai virus in tissue culture cells. III. Structural differences of Sendai viruses grown in eggs and in tissue culture cells. Journal of Virology 12:1457–1465
    [Google Scholar]
  20. Horsfall F. L., Hahn R. G. 1939; A pneumonia virus of Swiss mice. Proceedings of the Society for Experimental Biology and Medicine 40:684–686
    [Google Scholar]
  21. Horsfall F. L., Hahn R. G. 1940; A latent virus in normal mice capable of producing pneumonia in its natural host. Journal of Experimental Medicine 71:391–408
    [Google Scholar]
  22. Hsu M.-C., Scheid A., Choppin P. W. 1979; Reconstitution of membrane with individual paramyxovirus glycoproteins and phospholipid in cholate solution. Virology 95:476–491
    [Google Scholar]
  23. Hsu M.-C., Scheid A., Choppin P. W. 1982; Enhancement of membrane-fusion activity of Sendai virus by exposure of the virus to basic pH is correlated with a conformational change in the fusion protein. Proceedings of the National Academy of Sciences, U.S.A. 79:5862–5866
    [Google Scholar]
  24. Johnson P. R., Collins P. L. 1988; The fusion glycoproteins of human respiratory syncytial virus of subgroups A and B: sequence conservation provides a structural basis for antigenic relatedness. Journal of General Virology 69:2623–2628
    [Google Scholar]
  25. Kozak M. 1981; Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Research 9:5233–5252
    [Google Scholar]
  26. Ling R., Pringle C. R. 1989a; Polypeptides of pneumonia virus of mice. I. Immunological cross-reactions and post-translational modifications. Journal of General Virology 70:1427–1440
    [Google Scholar]
  27. Ling R., Pringle C. R. 1989b; Polypeptides of pneumonia virus of mice. II. Characterization of the glycoproteins. Journal of General Virology 70:1441–1452
    [Google Scholar]
  28. Lopez J. A., Penas C., Garcia-Barreno B., Melero J. A., Portela A. 1990; Location of a highly conserved neutralizing epitope in the F glycoprotein of human respiratory syncytial virus. Journal of Virology 64:927–930
    [Google Scholar]
  29. Messing J., Vieira J. 1982; A new pair of M13 vectors for selecting either DNA strand of double digest restriction fragments. Gene 19:269–276
    [Google Scholar]
  30. Morrison T. G. 1988; Structure, function, and intracellular processing of paramyxovirus membrane proteins. Virus Research 10:113–136
    [Google Scholar]
  31. Nagai Y., Klenk H.-D., Rott R. 1976; Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. Virology 72:494–508
    [Google Scholar]
  32. Neyt C., Geliebter J., Slaoui M., Morales D., Meulemans G., Burny A. 1989; Mutations located on both F1 and F2 subunits of Newcastle disease virus fusion protein confer resistance to neutralization with monoclonal antibodies. Journal of Virology 63:952–954
    [Google Scholar]
  33. Nibert M. C., Dermody T. S., Fields B. N. 1990; Structure of the reovirus cell attachment protein: a model for the domain organization of sigma 1. Journal of Virology 64:2976–2989
    [Google Scholar]
  34. Paterson R., Harris T., Lamb R. A. 1984; Fusion protein of the paramyxovirus simian virus 5: nucleotide sequence of mRNA predicts a highly hydrophobic glycoprotein. Proceedings of the National Academy of Sciences, U.S.A. 81:6706–6710
    [Google Scholar]
  35. Pringle C. R. 1987; Paramyxoviruses and disease. In Molecular Basis of Virus Disease, Society for General Microbiology Symposium vol 40 pp 91–138 Edited by Russell W. C., Almond J. W. Cambridge: Cambridge University Press;
    [Google Scholar]
  36. Pringle C. R., Eglin R. P. 1986; Murine pneumonia virus: seroepidemiological evidence of widespread human infection. Journal of General Virology 67:975–982
    [Google Scholar]
  37. Queen C., Korn L. J. 1984; A comprehensive sequence analysis program for the IBM personal computer. Nucleic Acids Research 12:581–599
    [Google Scholar]
  38. Richardson C., Hull D., Greer P., Hasel K., Berkovitch A., Englund G., Bellini W., Rima B., Lazzarini R. 1986; The nucleotide sequence of the mRNA encoding the fusion protein of measles virus (Edmonston strain): a comparison of fusion proteins from several different paramyxoviruses. Virology 155:508–523
    [Google Scholar]
  39. Ruigrok R. W. H., Wrigley N. G., Calder L. J., Cusack S., Wharton S. A., Brown E. B., Skehel J. J. 1986; Electron microscopy of the low pH structure of influenza virus haemagglutinin. EMBO Journal 5:41–49
    [Google Scholar]
  40. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. 1985; Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell anemia. Science 230:1350–1354
    [Google Scholar]
  41. Samson A. C. R., Chambers P., Dickinson J. H. 1980; Location of post-translational cleavage events within F and HN glycoproteins of Newcastle disease virus. Journal of General Virology 47:19–27
    [Google Scholar]
  42. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A. 74:5463–5467
    [Google Scholar]
  43. Scheid A., Choppin P. W. 1977; Two disulfide-linked polypeptide chains constitute the active F protein of paramyxoviruses. Virology 80:54–66
    [Google Scholar]
  44. Scopes G. E., Watt P. J., Lambden P. R. 1990; Identification of a linear epitope on the fusion glycoprotein of respiratory syncytial virus. Journal of General Virology 71:53–59
    [Google Scholar]
  45. Sechoy O., Philippot J. R., Bienvenue A. 1987; F protein-F protein interaction within the Sendai virus identified by native bonding or chemical cross-linking. Journal of Biological Chemistry 262:11519–11523
    [Google Scholar]
  46. Shioda T., Iwasaki K., Shibuta H. 1986; Determination of the complete nucleotide sequence of the Sendai virus genome RNA and the predicted amino acid sequences of the F, HN and L proteins. Nucleic Acids Research 14:1545–1563
    [Google Scholar]
  47. Snijder E. J., den Boon J. A., Spaan W. J. M., Horzinek M. C. 1990; Primary structure and post-translational processing of the Berne virus peplomer protein. Virology 178:355–363
    [Google Scholar]
  48. Spriggs M. K., Olmsted R. A., Venkatesan S., Coligan J. E., Collins P. L. 1986; Fusion protein of human parainfluenza virus type 3: nucleotide sequence of the gene, direct identification of the cleavage activation site, and comparison with other paramyxoviruses. Virology 152:241–251
    [Google Scholar]
  49. Toyoda T., Gotoh B., Sakaguchi T., Kida H., Nagai Y. 1988; Identification of amino acids relevant to three antigenic determinants on the fusion protein of Newcastle disease virus that are involved in fusion inhibition and neutralization. Journal of Virology 62:4427–4430
    [Google Scholar]
  50. Toyoda T., Sakaguchi T., Hirota H., Gotoh B., Kuma K., Miyata T., Nagai Y. 1989; Newcastle disease virus evolution. II. Lack of gene recombination in generating virulent and avirulent strains. Virology 169:273–282
    [Google Scholar]
  51. Trudel M., Nadon F., Seguin C., Dionne G., LaCroix M. 1987; Identification of a synthetic peptide as part of a major neutralization epitope of respiratory syncytial virus. Journal of General Virology 68:2273–2280
    [Google Scholar]
  52. Wiley D. C., Wilson I. A., Skehel J. J. 1981; Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature, London 289:373–378
    [Google Scholar]
  53. Wilson I. A., Skehel J. J., Wiley D. C. 1981; Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3Å. Nature, London 289:366–373
    [Google Scholar]
  54. Yu Q., Davis P. J., Barrett T., Binns M. M., Boursnell M. E. G., Cavanagh D. 1991; Deduced amino acid sequence of the fusion glycoprotein of turkey rhinotracheitis virus has greater identity with that of human respiratory syncytial virus, a pneumovirus, than that of paramyxoviruses and morbilliviruses. Journal of General Virology 72:75–81
    [Google Scholar]
  55. Yusoff K., Nesbit M., McCartney H., Meulemans G., Alexander D. J., Collins M. S., Emmerson P. T., Samson A. C. R. 1989; Location of neutralizing epitopes on the fusion protein of Newcastle disease virus strain Beaudette C. Journal of General Virology 703105–3109
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-7-1717
Loading
/content/journal/jgv/10.1099/0022-1317-73-7-1717
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error