1887

Abstract

Forty-four monoclonal antibodies (MAbs) to the G isolate of bovine enteric coronavirus were used for the characterization of the peplomer proteins S and HE. Fourteen of these MAbs reacted with HE and the remaining 30 with the products of the S gene, S1 (19 MAbs), S2 (six MAbs) and gp200 (five MAbs). S1 and HE were found to carry major neutralization determinants, and S1 appeared to elicit the production of the MAbs displaying the highest neutralizing activity. The topography of the epitopes was assessed by means of a competitive binding assay; the 44 MAbs defined four independent antigenic domains on S1, two on S2, one on gp200 and two on HE. All the neutralizing anti-S1 MAbs mapped in antigenic sites A and B and all the neutralizing anti-HE MAbs in HE-B. Antigenic site S1-B was further subdivided into four subsites. Functional mapping was performed by testing a library of neutralization-resistant mutants against the neutralizing MAbs. Analysis of their reactivity in a neutralization test confirmed the overall distribution of epitopes in S1-B and HE-B.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-7-1725
1992-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/7/JV0730071725.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-7-1725&mimeType=html&fmt=ahah

References

  1. Avrameas S., Terninck T. 1971; Peroxidase-labelled antibody and Fab conjugates with enhanced intracellular penetration. Immunochemistry 8:1175–1179
    [Google Scholar]
  2. Babiuk L. A., Sabara M., Hudson G. R. 1985; Rotavirus and coronavirus infections in animals. Progress in Veterinary Microbiology and Immunology 1:80–120
    [Google Scholar]
  3. Bazin H. 1982; Production of rat monoclonal antibodies with the LOU rat non-secreting IR983F myeloma cell-line. In Protides of the Biological Fluids vol 29 pp 615 Edited by Peeters H. Oxford: Pergamon Press;
    [Google Scholar]
  4. Bazin H., Crzych J. M., Verwaerde C., Capron A. 1980; A LOU rat non-secreting myeloma cell-line suitable for the production of rat-rat hybridomas. Annales d’lmmunologie 131D:359
    [Google Scholar]
  5. Boireau P., Cruciere C., Laporte J. 1990; Nucleotide sequence of the glycoprotein S gene of bovine enteric coronavirus and comparison with the S proteins of two mouse hepatitis virus strains. Journal of General Virology 71:487–492
    [Google Scholar]
  6. Correa I., Gebauer F., Bullido M. J., Suñe C., Baay M. F. D., Zwaagstra K. A., posthumus W. P. A., Lenstra J. A., Enjuanes L. 1990; Localization of antigenic sites of the E2 glycoprotein of transmissible gastroenteritis coronavirus. Journal of General Virology 71:271–279
    [Google Scholar]
  7. Crouch C. F., Bielefeldt Ohmann H., Watts T. C., Babiuk L. A. 1985; Chronic shedding of bovine enteric coronavirus antigen-antibody complexes by clinically normal cows. Journal of General Virology 66:1489–1500
    [Google Scholar]
  8. Dea S., Tdssen P. 1989; Antigenic and polypeptide structure of turkey enteric coronaviruses as defined by monoclonal antibodies. Journal of General Virology 70:1725–1741
    [Google Scholar]
  9. De Groot R. J., Luytjes W., Horzinek M. C., Van Der Zeust B. A. M., Spaan W. J. M., Lenstra J. A. 1987; Evidence for a coiled-coil structure in the spike proteins of coronaviruses. Journal of Molecular Biology 196:963–966
    [Google Scholar]
  10. Delmas B., Laude H. 1990; Assembly of coronavirus spike protein into trimers and its role in epitope expression. Journal of Virology 64:5367–5375
    [Google Scholar]
  11. Delmas B., Gelfi J., Laude H. 1986; Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. Journal of General Virology 67:1405–1418
    [Google Scholar]
  12. Delmas B., Rasschaert D., Godet M., Gelfi J., Laude H. 1990; Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike glycoprotein S. Journal of General Virology 71:1313–1323
    [Google Scholar]
  13. Deregt D., Babiuk L. A. 1987; Monoclonal antibodies to bovine coronavirus: characteristics and topographical mapping of neutralizing epitopes on the E2 and E3 glycoproteins. Virology 161:410–420
    [Google Scholar]
  14. Deregt D., Sabara M., Babiuk L. A. 1987; Structural proteins of bovine coronavirus and their intracellular processing. Journal of General Virology 68:2863–2877
    [Google Scholar]
  15. Deregt D., Gifford G. A., Ijaz M. K., Watts T. C., Gilchrist J. E., Haines D. M., Babiuk L. A. 1989; Monoclonal antibodies to bovine coronavirus glycoproteins E2 and E3: demonstration of in vivo virus-neutralizing activity. Journal of General Virology 70:993–998
    [Google Scholar]
  16. Downs F., Pigman W. 1969; Preparation of glycopeptides from bovine submaxillary mucin by chemical degradation. Biochemistry 8:1760–1766
    [Google Scholar]
  17. Gallagher T. M., Parker S. E., Buchmeier M. J. 1990; Neutralization-resistant variants of a neurotropic coronavirus are generated by deletions within the amino-terminal half of the spike glycoprotein. Journal of Virology 64:731–741
    [Google Scholar]
  18. Garcia-Sastre A., Villar E., Manuguerra J. C., Hannoun C., Cabezas J. A. 1991; Activity of influenza C virus O-acetylesterase with O-acetyl-containing compounds. Biochemical Journal 273:435–441
    [Google Scholar]
  19. Guesdon J. L., Terninck T., Avrameas S. 1979; The use of avidin-biotin interaction in immunoenzymatic techniques. Journal of Histochemistry and Cytochemistry 27:1131–1139
    [Google Scholar]
  20. Hachinoe S., Sugawara K., Nishimura H., Kitame F., Nakamura K. 1989; Effect of anti-haemagglutinin-esterase glycoprotein monoclonal antibodies on the receptor-destroying activity of influenza C virus. Journal of General Virology 70:1287–1292
    [Google Scholar]
  21. Iorio R. M., Bratt M. A. 1984; Monoclonal antibodies as functional probes of the HN glycoprotein of Newcastle disease virus: antigenic separation of the hemagglutinating and neuraminidase sites. Journal of Immunology 133:2215–2219
    [Google Scholar]
  22. Jackson D. C., Webster R. G. 1982; A topographic map of the enzyme active center and antigenic sites on the neuraminidase of influenza virus A/Tokyo/3/67 (H2N2). Virology 123:69–77
    [Google Scholar]
  23. Kienzle T. E., Abraham S., Hogue B. G., Brian D. A. 1990; Structure and orientation of expressed bovine coronavirus hemagglutinin-esterase protein. Journal of Virology 64:1834–1838
    [Google Scholar]
  24. King B., Brian D. A. 1982; Bovine coronavirus structural proteins. Journal of Virology 42:700–707
    [Google Scholar]
  25. King B., Potts B. J., Brian D. A. 1985; Bovine coronavirus hemagglutinin protein. Virus Research 2:53–59
    [Google Scholar]
  26. Koch G., Hartog L., Kant A., Van Roozelaar D. J. 1990; Antigenic domains on the peplomer protein of avian infectious bronchitis virus: correlation with biological functions. Journal of General Virology 71:1929–1935
    [Google Scholar]
  27. Kusters J. G., Jager E. J., Lenstra J. A., Koch G., Posthumus W. P. A., Meloen R. H., van der Zeust B. A. M. 1989; Analysis of an immunodominant region of infectious bronchitis virus. Journal of Immunology 143:2692–2698
    [Google Scholar]
  28. Kyhse-Andersen J. 1984; Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. Journal of Biochemical and Biophysical Methods 10:203–209
    [Google Scholar]
  29. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680685
    [Google Scholar]
  30. Laporte J., Bobulesco P. 1981; Polypeptide structure of bovine enteric coronavirus: comparison between a wild strain purified from feces and an HRT-18 cell-adapted strain. In Biochemistry and Biology of Coronaviruses pp 181–184 Edited by ter Meulen V., Siddell S., Wege H. New York: Plenum Press;
    [Google Scholar]
  31. Laporte J., L’Haridon R., Bobulesco P. 1979; In vitro culture of bovine enteritic coronavirus (BEC). Colloques INSERM 90:99–102
    [Google Scholar]
  32. Laude H., Chapsal J.-M., Gelfi J., Labiau S., Grosclaude J. 1986; Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins. Journal of General Virology 67:119–130
    [Google Scholar]
  33. Luytjes W., Geerts D., Posthumus W., Meloen R., Spaan W. 1989; Amino acid sequence of a conserved neutralizing epitope of murine coronavirus. Journal of Virology 63:1408–1412
    [Google Scholar]
  34. Niesters H. F. G. M., Bleumink-Pluym N. M. C., Osterhaus A. D. M. E., Horzinek M. C., van der Zeust B. A. M. 1987; Epitopes on the peplomer protein of infectious bronchitis virus strain M41 as defined by monoclonal antibodies. Virology 161:511–519
    [Google Scholar]
  35. Parker M. D., Cox G. J., Deregt D., Fitzpatrick D. R., Babiuk L. A. 1989; Cloning and in vitro expression of the gene for the E3 haemagglutinin glycoprotein of bovine coronavirus. Journal of General Virology 70:155–164
    [Google Scholar]
  36. Parker M. D., Yoo D., Babiuk L. A. 1990; Expression and secretion of the bovine coronavirus hemagglutinin-esterase glycoprotein by insect cells infected with recombinant baculoviruses. Journal of Virology 64:1625–1629
    [Google Scholar]
  37. Roseto A., Vautherot J. F., Bobulesco P., Guillemin M. C. 1982; Isolement d’hybrides cellulaires secrétant des anticorps spécifiques du coronavirus entérique bovin. Compte Rendu de l’Académic des Sciences de Paris 294:347–352
    [Google Scholar]
  38. Schultze B., Wahn K., Klenk H.-D., Herrler G. 1991; Isolated HE-protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity. Virology 180:221–228
    [Google Scholar]
  39. Spaan W., Cavanagh D., Horzinek M. C. 1988; Coronaviruses: structure and genome expression. Journal of General Virology 69:2939–2952
    [Google Scholar]
  40. Stair E. L., Rhodes M. B., White R. G., Mebus C. A. 1972; Neonatal calf diarrhea: purification and electron microscopy of a coronavirus-like agent. American Journal of Veterinary Research 33:1147–1157
    [Google Scholar]
  41. Takahashi E., Inaba Y., Sato K., Ito Y., Kurogi H., Akashi H., Satoda K., Omori T. 1980; Epizootic diarrhoea of adult cattle associated with a coronavirus-like agent. Veterinary Microbiology 5:151–154
    [Google Scholar]
  42. Tompkins W. A. F., Watrach A. W., Schmale J. D., Schultz B. M., Habris J. A. 1974; Cultural and antigenic properties of newly established cell strains derived from adenocarcinomas of the human colon and rectum. Journal of the National Cancer Institute 52:101–106
    [Google Scholar]
  43. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, U.S.A. 76:4350–4353
    [Google Scholar]
  44. Vautherot J. F. 1981; Plaque assay for titration of bovine enteric coronavirus. Journal of General Virology 56:451–455
    [Google Scholar]
  45. Vautherot J. F., Laporte J. 1983; Utilization of monoclonal antibodies for antigenic characterization of coronaviruses. Annales de Recherches Vétérinaires 14:437–444
    [Google Scholar]
  46. Vautherot J. F., Laporte J., Madelaine M. F., Bobulesco P., Roseto A. 1984; Antigenic and polypeptide structure of bovine enteric coronavirus as defined by monoclonal antibodies. In Molecular Biology and Pathogenesis of Coronavirus pp 117–131 Edited by Rottier M. P. J., van der Zeijst B. A. M., Spaan W. J. M. New York: Plenum Press;
    [Google Scholar]
  47. Vennema H., Rottier P. J. M., Heunen L., Godeke G. J., Horzinek M. C., Spaan W. J. M. 1990; Biosynthesis and function of the coronavirus spike protein. In Coronaviruses and their Diseases pp 9–19 Edited by Cavanagh D., Brown T. D. K. New York: Plenum Press;
    [Google Scholar]
  48. Vlasak R., Luytjes W., Spaan W., Palese P. 1988a; Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proceedings of the National Academy of Sciences, U.S.A. 85:4526–4529
    [Google Scholar]
  49. Vlasak R., Luytjes W., Leider J., Spaan W., Palese P. 1988b; The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity. Journal of Virology 62:4686–4690
    [Google Scholar]
  50. Volk W. A., Snyder R. M., Benjamin D. C., Wagner R. R. 1982; Monoclonal antibodies to the glycoprotein of vesicular stomatitis virus: comparative neutralizing activity. Journal of Virology 42:220–227
    [Google Scholar]
  51. Wege H., Dörries R., Wege H. 1984; Hybridoma antibodies to the murine coronavirus JHM: characterization of epitopes on the peplomer protein (E2). Journal of General Virology 65:1931–1942
    [Google Scholar]
  52. Yoo D., Parker M. D., Babiuk L. A. 1990; Analysis of the S spike (peplomer) glycoprotein of bovine coronavirus synthesized in insect cells. Virology 179:121–128
    [Google Scholar]
  53. Yoo D., Parker M. D., Song J., Cox G. J., Deregt D., Babiuk L. A. 1991; Structural analysis of the conformational domains involved in neutralization of bovine coronavirus using deletion mutants of the spike glycoprotein S1 subunit expressed by recombinant baculoviruses. Virology 18391–98
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-7-1725
Loading
/content/journal/jgv/10.1099/0022-1317-73-7-1725
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error