1887

Abstract

The complete nucleotide sequence of the genomic RNAs of strains G2 and G7 of soybean mosaic virus were determined. In both cases, the genome is 9588 nucleotides long, excluding the 3′-terminal poly(A) sequence. A large open reading frame (nucleotides 132 to 9329) encodes a polyprotein of 3066 amino acids with a predicted of either 349542 (strain G2) or 349741 (strain G7). Based on comparison with the proposed locations of cleavage sites of other potyvirus polyproteins, nine mature proteins are predicted. The mature proteins of the two strains share 94 to 100% amino acid identity, with the greatest variability occurring in the 35K and 42K proteins. Differences in local net charge in portions of these proteins as well as differences in amino acid sequence throughout the genome are discussed in relation to resistance and susceptibility of host plants to strains G2 and G7. Comparison with other potyviruses may be useful for taxonomic clarification of viruses and strains.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-8-2067
1992-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/8/JV0730082067.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-8-2067&mimeType=html&fmt=ahah

References

  1. Allison R. F., Johnston R. E., Dougherty W. G. 1986; The nucleotide sequence of the coding region of tobacco etch virus genomic RNA: evidence for the synthesis of a single polyprotein. Virology 154:9–20
    [Google Scholar]
  2. Buzzel R. I., Tu J. C. 1984; Inheritance of soybean resistance to soybean mosaic virus. Journal of Heredity 75:82
    [Google Scholar]
  3. Carrington J. C., Cary S. M., Parks T. D., Dougherty W. G. 1989; A second proteinase encoded by a plant potyvirus genome. EM BO Journal 8:365–370
    [Google Scholar]
  4. Chen P., Buss G. R., Tolin S. A. 1988; Inheritance of reaction to strains G5 and G6 of soybean mosaic virus (SMV) in differential soybean cultivars. Soybean Genetics Newsletter 15:130–134
    [Google Scholar]
  5. Cho E., Goodman R. M. 1979; Strains of soybean mosaic virus: classification based on virulence in resistant soybean cultivars. Phytopathology 69:467–470
    [Google Scholar]
  6. Company M., Arenas J., Abelson J. 1991; Requirement of the RNA helicase-like protein PRP22 for release of messenger RNA from spliceosomes. Nature, London 349:487–493
    [Google Scholar]
  7. Deom C. M., Oliver M. J., Beachy R. N. 1987; The 30kd gene product of tobacco mosaic virus potentiates virus movement. Science 237:389–394
    [Google Scholar]
  8. Domier L. L., Franklin K. M., Shahabuddin M., Hellmann G. M., Overmeyer J. H., Hiremath S. T., Siaw M. F., Lomonossoff G. P., Shaw J. G., Rhoads R. E. 1986; The nucleotide sequence of tobacco vein mottling virus RNA. Nucleic Acids Research 14:5417–5430
    [Google Scholar]
  9. Domier L. L., Shaw J. G., Rhoads R. E. 1987; Potyviral proteins share amino sequence homology with picoma-, como-, and caulimo-viral proteins. Virology 158:20–27
    [Google Scholar]
  10. Dougherty W. G., Parks T. D. 1991; Post-translational processing of the tobacco etch virus 49-kDa small nuclear inclusion polyprotein: identification of an internal cleavage site and delimitation of VPg and proteinase domains. Virology 183:449–456
    [Google Scholar]
  11. Dougherty W. G., Carrington J. C., Cary S. M., Parks T. D. 1988; Biochemical and mutational analysis of a plant virus polyprotein cleavage site. EMBO Journal 7:1281–1287
    [Google Scholar]
  12. Edwardson J. R., Christie R. G. 1986; Viruses infecting forage legumes. vol 2: Florida Agricultural Experiment Station Monograph Series no 14
    [Google Scholar]
  13. George D. G., Barker W. C., Hunt L. T. 1990; Mutation data matrix and its uses. Methods in Enzymology 183:333–351
    [Google Scholar]
  14. Ghabrial S. A., Smith H. A., Parks T. D., Dougherty W. G. 1990; Molecular genetic analyses of the soybean mosaic virus NIa proteinase. Journal of General Virology 71:1921–1927
    [Google Scholar]
  15. Gubler U., Hoffman B. J. 1983; A simple and very efficient method for generating cDNA libraries. Gene 25:263–269
    [Google Scholar]
  16. Hellman G. M., Thornbury D. W., Pirone T. P. 1990; Molecular analysis of tobacco vein mottling virus (TVMV) pathogenicity by infectious transcripts of chimeric potyviral cDNA genomes. Phytopathology 80:1036 (abstract)
    [Google Scholar]
  17. Hill J. H., Benner H. I. 1980a; Properties of soybean mosaic virus and its isolated protein. Phytopathologische Zeitschrift 97:272–281
    [Google Scholar]
  18. Hill J. H., Benner H. I. 1980b; Properties of soybean mosaic virus ribonucleic acid. Phytopathology 70:236–239
    [Google Scholar]
  19. Hill J. H., Benner H. I., Permar T. A., Bailey T. B., Andrews R. E. Jr, Durand D. P., Van Deusen R. A. 1989; epidemiology of soybean mosaic virus in Iowa. Phytopathology 70:536–540
    [Google Scholar]
  20. Hill J. H., Benner H. I., Permar T. A., Bailey T. B., Andrews R. E. Jr, Durand D. P., Van Deusen R. A. 1989; Differentiation of soybean mosaic virus isolates by one-dimensional trypsin peptide maps immunoblotted with monoclonal antibodies. Phytopathology 79:1261–1265
    [Google Scholar]
  21. Hollings M., Brunt A. A. 1981; Potyvirus group. CMI/AAB Descriptions of Plant Viruses no. 245
    [Google Scholar]
  22. Jayaram C. H., Hill J. H., Miller W. A. 1991; Nucleotide sequences of the coat protein genes of two aphid-transmissible strains of soybean mosaic virus. Journal of General Virology 72:1001–1003
    [Google Scholar]
  23. Kamer G., Argos P. 1984; Primary structural comparison of RNA-dependent polymerase from plant, animal and bacterial viruses. Nucleic Acids Research 12:7269–7282
    [Google Scholar]
  24. Kihl R. A. S., Hartwig E. E. 1979; Inheritance of reaction to soybean mosaic virus in soybeans. Crop Science 19:372–375
    [Google Scholar]
  25. Kohm B., Santa Cruz S., Goulden M., Kavanagh T., Baulcombe D. 1991; Molecular study of resistance in Solanum tuberosum cv. Cara and potato virus X (PVX). Abstract No. 1225, Third International Congress of Plant Molecular Biology, Molecular Biology of Plant Growth and Development.
    [Google Scholar]
  26. Koonin E. V. 1991; Similarities in RNA helicases. Nature, London 352:290
    [Google Scholar]
  27. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  28. Laín S., Riechmann J. L., García J. A. 1990; RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus. Nucleic Acids Research 18:7003–7006
    [Google Scholar]
  29. Laín S., Martín M. T., Riechmann J. L., García J. A. 1991; Novel catalytic activity associated with positive-strand RNA virus infection: nucleic acid-stimulated ATPase activity of the plum pox potyvirus helicaselike protein. Journal of Virology 65:1–6
    [Google Scholar]
  30. Lim S. M. 1985; Resistance to soybean mosaic virus in soybeans. Phytopathology 75:199–201
    [Google Scholar]
  31. Lucas B. S., Hill J. H. 1980; Characteristics of the transmission of three soybean mosaic virus isolates by Myzus persicae and Rhopalosiphum maidis . Phytopathologische Zeitschrift 97:47–53
    [Google Scholar]
  32. Maiss E., Timpe U., Brisske A., Jelkmann W., Casper R., Himmler G., Mattanovich D., Katinger H. W. D. 1989; The complete nucleotide sequence of plum pox virus RNA. Journal of General Virology 70:513–524
    [Google Scholar]
  33. Mavankal G., Rhoads R. E. 1991; In vitro cleavage at or near the N-terminus of the helper component protein in the tobacco vein mottling virus polyprotein. Virology 185:721–731
    [Google Scholar]
  34. Meshi T., Watanabe Y., Saito T., Sugimoto A., Maeda T., Okada Y. 1987; Functions of the 30kd protein of tobacco mosaic virus: involvement in cell-to-cell movement and dispensability for replication. EMBO Journal 6:2557–2563
    [Google Scholar]
  35. Meshi T., Motoyoshi F., Adachi A., Watanabe Y., Takamatsu N., Okada Y. 1988; Two concomitant base substitutions in the putative replicase genes of tobacco mosaic virus confer the ability to overcome the effects of a tomato resistance gene, Tm-1. EMBO Journal 7:1575–1581
    [Google Scholar]
  36. Mierendorf R. C., Pfeffer D. 1987; Sequencing of RNA transcripts synthesized in vitro from plasmids containing bacteriophage promoters. Methods in Enzymology 152:563–566
    [Google Scholar]
  37. Moser O., Gagey M.-J., Godefroy-Colburn T., Stussi-Garaud C., Ellwart-Tschurtz M., Nitschko H., Mundry K.-W. 1988; The fate of the transport protein of tobacco mosaic virus in systemic and hypersensitive tobacco hosts. Journal of General Virology 69:1367–1373
    [Google Scholar]
  38. Parks T. D., Dougherty W. G. 1991; Substrate recognition by the NIa proteinase of two potyviruses involves multiple domains: characterization using genetically engineered hybrid proteinase molecules. Virology 182:17–27
    [Google Scholar]
  39. Ponz F., Glascock C. B., Bruening G. 1988; An inhibitor of polyprotein processing with the characteristics of a natural virus resistance factor. Molecular Plant-Microbe Interactions 1:25–31
    [Google Scholar]
  40. riechmann J. L., Lain S., Garcla J. A. 1992; Highlights and prospects of potyvirus molecular biology. Journal of General Virology 73:1–16
    [Google Scholar]
  41. Robaglia C., Durand-Tardif M., Tronchet M., Boudazin G., Astier-Manifacier S., Casse-Delbart F. 1989; Nucleotide sequence of potato virus Y (N strain) genomic RNA. Journal of General Virology 70:935–947
    [Google Scholar]
  42. Sanderson J. L., Bruening G., Russell M. L. 1985; Possible molecular basis of immunity of cowpeas to cowpea mosaic virus. UCLA Symposia on Molecular and Cell Biology, New Series 22:401–412
    [Google Scholar]
  43. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A. 74:5463–5467
    [Google Scholar]
  44. Shukla D. D., Ward C. W. 1989; Identification and classification of potyviruses on the basis of coat protein sequence data and serology. Archives of Virology 106:171–200
    [Google Scholar]
  45. Siegel A. 1979; Recognition and specificity in plant virus infection. In Plant Resistance to Viruses pp 109–113 Edited by Evered D., Harnett S. Chichester: John Wiley and Sons;
    [Google Scholar]
  46. Taliansky M. E., Malyshenko S. I., Pshennikova E. S., Atabekov J. G. 1982; Plant virus-specific transport functions. II. A factor controlling host range. Virology 122:327–331
    [Google Scholar]
  47. Vance V. B., Beachy R. N. 1984a; Translation of soybean mosaic virus RNA in vitro: evidence for protein processing. Virology 132:271–281
    [Google Scholar]
  48. Vance V. B., Beachy R. N. 1984b; Detection of genomic-length soybean mosaic virus RNA on polyribosomes of infected soybean leaves. Virology 132:26–36
    [Google Scholar]
  49. Verchot J. M., Koonin E. V., Carrington J. C. 1991; The 35-kDa protein from the N-terminus of the potyviral polyprotein functions as a third virus-encoded protease. Virology 185:527–535
    [Google Scholar]
  50. Ward C. W., Shukla D. D. 1991; Taxonomy of potyviruses: current problems and some solutions. Intervirology 32:269–296
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-8-2067
Loading
/content/journal/jgv/10.1099/0022-1317-73-8-2067
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error