1887

Abstract

Subgenomic messenger RNAs transcribed from the tomato spotted wilt virus (TSWV) S RNA segment were partially purified from total RNA extracts of TSWV-infected and analysed by primer extension analysis. The data obtained show the presence of non-viral sequences, 12 to 20 nucleotides in length, at the 5′ ends of the N and NS mRNAs, indicating a cap-snatching mechanism for the initiation of transcription. This is the first report of a plant virus using such a mechanism for transcription of the viral genome.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-8-2125
1992-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/8/JV0730082125.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-8-2125&mimeType=html&fmt=ahah

References

  1. Bailey J. M., Davidson N. 1976; Methylmercury as a reversible denaturing agent for agarose gel electrophoresis. Analytical Biochemistry 70:75–85
    [Google Scholar]
  2. Bishop D. H. L., Gay M. E., Matsuoko Y. 1983; Non-viral heterogeneous sequences are present at the 5′ ends of one species of snowshoe hare bunyavirus S complementary RNA. Nucleic Acids Research 11:6409–6418
    [Google Scholar]
  3. Bouloy M., Pardigon N., Vialat P., Gerbaud S., Girard M. 1990; Characterization of the 5′ and 3′ ends of viral messenger RNAs isolated from BHK21 cells infected with Germiston virus (Bunyavirus). Virology 175:50–58
    [Google Scholar]
  4. Braam J., Ulmanen I., Krug R. M. 1983; Molecular model of a eucaryotic transcription complex: functions and movements of influenza P proteins during capped RNA-primed transcription. Cell 34:609–618
    [Google Scholar]
  5. Caton A. J., Robertson J. S. 1980; Structure of the host-derived sequences present at the 5′ ends of influenza virus mRNA. Nucleic Acids Research 8:2591–2603
    [Google Scholar]
  6. Collett M. S. 1986; Messenger RNA of the M segment RNA of Rift Valley fever virus. Virology 151:151–156
    [Google Scholar]
  7. Davis L. G., Dibner M. D., Battey J. F. 1986 Basic Methods in Molecular Biology Amsterdam: Elsevier Science Publishers;
    [Google Scholar]
  8. de Haan P., Wagemakers L., Peters D., Goldbach R. W. 1990; The S RNA segment of tomato spotted wilt virus has an ambisense character. Journal of General Virology 71:1001–1007
    [Google Scholar]
  9. de Haan P., Kormelink R., Resende R., DE O., van Poelwijk F., Peters D., Goldbach R. 1991; Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. Journal of General Virology 72:2207–2216
    [Google Scholar]
  10. De Vries S. C., Springer J., Wessels J. G. H. 1982; Diversity of abundant mRNA sequences and patterns of protein synthesis in etiolated and greened pea seedlings. Planta 156:129–135
    [Google Scholar]
  11. Dhar R., Chanock R. M., Lai C.-J. 1980; Non-viral oligonucleotides at the 5′ terminus of cytoplasmic influenza viral mRNA deduced from cloned complete genomic sequences. Cell 21:495–500
    [Google Scholar]
  12. Eshita Y., Ericson B., Romanowski V., Bishop D. H. L. 1985; Analyses of the mRNA transcription processes of snowshoe hare bunyavirus S and M RNA species. Journal of Virology 55:681–689
    [Google Scholar]
  13. Francki R. I. B., Fauquet C. M., Knudson D. L., Brown F. 1991; Classification and nomenclature of viruses: fifth report of the International Committee on Taxonomy of Viruses. Archives of Virology supplement 2.
    [Google Scholar]
  14. Garcin D., Kolakofsky D. 1990; A novel mechanism for the initiation of Tacaribe arenavirus genome replication. Journal of Virology 64:6196–6203
    [Google Scholar]
  15. Gerbaud S., Pardigon N., Vialat P., Bouloy M. 1987; The S segment of the Germiston bunyavirus genome: coding strategy and transcription. In The Biology of Negative-Strand Viruses pp. 191–198 Edited by Mahy B., Kolakofsky D. Amsterdam: Elsevier;
    [Google Scholar]
  16. Giorgi C., Accardi L., Nicoletti L., Gro M. C., Takehara K., Hilditch C., Morikawa S., Bishop D. H. L. 1991; Sequences and coding strategies of the S RNAs of Toscana and Rift Valley fever viruses compared to those of Punta Toro, Sicilian sandfly fever, and Uukuniemi viruses. Virology 180:738–753
    [Google Scholar]
  17. Ihara T., Akashi H., Bishop D. H. L. 1984; Novel coding strategy (ambisense genomic RNA) revealed by sequence analyses of Punta Toro phlebovirus S RNA. Virology 136:293–306
    [Google Scholar]
  18. Ihara T., Matsuura Y., Bishop D. H. L. 1985; Analyses of the mRNA transcription processes of Punta Toro phlebovirus (Bunya-viridae). Virology 147:317–325
    [Google Scholar]
  19. Kormelink R., Kitajima E. W., de Haan P., Zuidema D., Peters D., Goldbach R. 1991; The non-structural protein (NSs) encoded by the ambisense S RNA segment of tomato spotted wilt virus is associated with fibrous structures in infected plant cells. Virology 181:459–468
    [Google Scholar]
  20. Kormelink R., de Haan P., Peters D., Goldbach R. 1992; Viral RNA synthesis in tomato spotted wilt virus-infected Nicotiana rustica plants. Journal of General Virology 73:687–693
    [Google Scholar]
  21. Marriott A. C., Ward V. K., Nuttall P. A. 1989; The S RNA segment of sandfly fever Sicilian virus: evidence for an ambisense genome. Virology 169:341–345
    [Google Scholar]
  22. Patterson J. L., Kolakofsky D. 1984; Characterization of La Crosse virus small-genome transcripts. Journal of Virology 49:680–685
    [Google Scholar]
  23. Patterson J. L., Holloway B., Kolakofsky D. 1984; La Crosse virions contain a primer-stimulated RNA polymerase and a methylated cap-dependent endonuclease. Journal of Virology 52:215–222
    [Google Scholar]
  24. Plotch S. J., Bouloy M., Ulmanen I., Krug R. M. 1981; A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23:847–858
    [Google Scholar]
  25. Raju R., Raju L., Hacker D., Garcin D., Compans R., Kolakofsky D. 1990; Non-templated bases at the 5′ ends of Tacaribe virus mRNAs. Virology 174:53–59
    [Google Scholar]
  26. Simons J. F., Pettersson R. F. 1991; Host-derived ends and overlapping complementary 3′ ends of the two mRNAs transcribed from the ambisense S segment of Uukuniemi virus. Journal of Virology 65:4741–4748
    [Google Scholar]
  27. Simons J. F., Hellman U., Pettersson R. F. 1990; Uukuniemi virus S RNA segment: ambisense coding strategy, packaging of complementary strands into virions, and homology to members of the genus phlebovirus. Journal of Virology 64:247–255
    [Google Scholar]
  28. Ulmanen I., Broni B. A., Krug R. M. 1981a; Role of two of the influenza virus core P proteins in recognizing cap 1 structures(m7GpppNm) on RNAs and in initiating viral RNA transcription. Proceedings of the National Academy of Sciences, U.S.A. 78:7355–7359
    [Google Scholar]
  29. Ulmanen I., Seppala P., Pettersson R. F. 1981b; In vitro translation of Uukuniemi virus-specific RNAs: identification of a non-structural protein and a precursor to the membrane glycoproteins. Journal of Virology 37:72–79
    [Google Scholar]
  30. Vialat P., Bouloy M. 1992; Germiston virus transcriptase requires active 40S ribosomal subunits and utilizes capped cellular RNAs. Journal of Virology 66:685–693
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-8-2125
Loading
/content/journal/jgv/10.1099/0022-1317-73-8-2125
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error