1887

Abstract

Comparative analysis of DNA sequences located between the coding regions of genes UL49 and UL50 of herpes simplex virus types 1 and 2 (HSV-1 and -2) has revealed a small open reading frame (ORF) of 91 and 87 codons respectively with the characteristics of a genuine protein-coding region. The predicted protein products are clearly related and exhibit features of membrane-inserted proteins, with potential N-proximal signal peptides and C-proximal membrane anchor regions. Counterparts are present in the other sequenced alphaherpesviruses, namely varicella-zoster virus (a previously undescribed gene, 9A) and equine herpesvirus type 1 (gene 10), in the betaherpesvirus human cytomegalovirus (gene UL73) and in the gammaherpesvirus Epstein-Barr virus (gene BLRF1). Therefore, we consider that this ORF represents an additional HSV gene (UL49A) with counterparts in all sequenced alpha-, beta- and gammaherpesviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-8-2167
1992-08-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/8/JV0730082167.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-8-2167&mimeType=html&fmt=ahah

References

  1. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Seguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature, London 310:207–211
    [Google Scholar]
  2. Bankier A. T., Barrell B. G. 1989; Sequencing single-stranded DNA using the chain-termination method. In Nucleic Acids Sequencing: A Practical Approach pp. 37–77 Edited by Howe C. J., Ward E. S. Oxford: IRL Press;
    [Google Scholar]
  3. Barker D. E., Roizman B. 1992; The unique sequence of the herpes simplex virus L component contains an additional translated open reading frame designated UL49.5. Journal of Virology 66:562–566
    [Google Scholar]
  4. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchison C. A. III, Kouzarides T., Martignetti J. A., Preddie E., Satchwell S. C., Tomlinson P., Weston K. M., Barrell B. G. 1990; Analysis of the protein coding content of the sequence of human cytomegalovirus strain AD169. Current Topics in Microbiology and Immunology 154:125–169
    [Google Scholar]
  5. Chou J., Roizman B. 1990; The herpes simplex virus 1 gene for ICP34.5, which maps in inverted repeats, is conserved in several limited passage isolates but not in strain 17 syn+ . Journal of Virology 64:1014–1020
    [Google Scholar]
  6. Cohen G. H., Ponce de Leon M., Diggelmann H., Lawrence W. C., Vernon S. K., Eisenberg R. J. 1980; Structural analysis of the capsid polypeptides of herpes simplex virus types 1 and 2. Journal of Virology 34:521–531
    [Google Scholar]
  7. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  8. Davison M. D., Rixon F. J., Davison A. J. 1992; Identification of genes encoding two capsid proteins (VP24 and VP26) of herpes simplex virus type 1. Journal of General Virology 73: (in press)
    [Google Scholar]
  9. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  10. Dolan A., McKie E., MacLean A. R., McGeoch D. J. 1992; Status of the ICP34.5 gene in herpes simplex virus type 1 strain 17. Journal of General Virology 73:971–973
    [Google Scholar]
  11. Eisenberg D., Weis R. M., Terwilliger T. C. 1984; The hydrophobic moment detects periodicity in protein hydrophobicity.. Proceedings of the National Academy of Sciences U.S.A 81:140–144
    [Google Scholar]
  12. Foa-Tomasi L., Avitabile E., Boscaro A., Brandimarti R., Gualandri R., Manservigi R., Dall’Olio F., Serafini-Cessi F., Campadelli-Fiume G. 1991; Herpes simplex virus (HSV) glycoprotein H is partially processed in a cell line that expresses the glycoprotein and fully processed in cells infected with deletion or ts mutants in the known HSV glycoproteins. Virology 184:609–618
    [Google Scholar]
  13. Grand R. J. A. 1989; Acylation of viral and eukaryotic proteins. Biochemical Journal 298:625–638
    [Google Scholar]
  14. Hall L. M., Draper K. G., Frink R. J., Costa R. H., Wagner E. K. 1982; Herpes simplex virus mRNA species mapping in Eco RI fragment 1 . Journal of Virology 43:594–607
    [Google Scholar]
  15. Johnson D. C., Frame M. C., Ligas M. W., Cross A. M., Stow N. D. 1988; Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gI. Journal of Virology 621347–1354
    [Google Scholar]
  16. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  17. Liu F., Roizman B. 1991; The promoter, transcriptional unit, and coding sequence of herpes simplex virus 1 family 35 proteins are contained within and in frame with the UL26 open reading frame. Journal of Virology 65:206–212
    [Google Scholar]
  18. McGeoch D. J. 1985; On the predictive recognition of signal peptide sequences. Virus Research 3:271–286
    [Google Scholar]
  19. McGeoch D. J., Moss H. W. M., McNab D., Frame M. C. 1987; DNA sequence and genetic content of the Hind III l region in the short unique component of the herpes simplex virus type 2 genome: identification of the gene encoding glycoprotein G, and evolutionary comparisons. Journal of General Virology 68:19–38
    [Google Scholar]
  20. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  21. Perry L. J., McGeoch D. J. 1988; The DNA sequences of the long repeat region and adjoining parts of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:2831–2846
    [Google Scholar]
  22. Staden R. 1987; Computer handling of DNA sequencing projects. In Nucleic Acid And Protein Sequence Analysis: A Practical Approach pp. 173–217 Edited by Bishop M. J., Rawlings C. J. Oxford: IRL Press;
    [Google Scholar]
  23. Stannard L. M., Fuller A. O., Spear P. G. 1987; Herpes simplex virus glycoproteins associated with different morphological entities projecting from the virion envelope. Journal of General Virology 68:715–725
    [Google Scholar]
  24. Telford E. A. R., McBride K., Watson M. S., Davison A. J. 1992; The DNA sequence of equine herpesvirus 1. Virology (in press)
    [Google Scholar]
  25. von Heijne G. 1986; A new method for predicting signal sequence cleavage sites. Nucleic Acids Research 14:4683–4690
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-8-2167
Loading
/content/journal/jgv/10.1099/0022-1317-73-8-2167
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error