1887

Abstract

The glycosylation patterns of the envelope (E) glycoprotein of several naturally occurring strains of St Louis encephalitis (SLE) virus were investigated. SLE viruses were found that contained both glycosylated and non-glycosylated E proteins, and one isolate (Tr 9464) that lacks -linked glycosylation sites on its E protein was identified. SLE virus monoclonal antibodies that define E protein B cell epitopes and demonstrate biological activities reacted essentially to the same extent with glycosylated and non-glycosylated virions. These results indicate that glycosylation is not essential for epitope conformation or recognition. However, failure to glycosylate the E protein was associated with possible morphogenetic differences as manifested by reduced virus yields and differences in specific infectivity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-12-2653
1993-12-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/12/JV0740122653.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-12-2653&mimeType=html&fmt=ahah

References

  1. Ballinger-Crabtree M. E., Miller B. R. 1990; Partial nucleotide sequence of South American yellow fever virus strain 1899/81: structural proteins and NS1. Journal of General Virology 71:2115–2121
    [Google Scholar]
  2. Barrett A. D. T., Mathews J. H., Miller B. R., Medlen A. R., Ledger T. N., Roehrig J. T. 1990; Identification of monoclonal antibodies that distinguish between 17D-204 and other strains of yellow fever virus. Journal of General Virology 71:13–18
    [Google Scholar]
  3. Bonner W. M., Laskey R. A. 1974; A film detection method for tritium-labelled protein and nucleic acid in polyacrylamide gels. European Journal of Biochemistry 46:83–88
    [Google Scholar]
  4. Bowen G. S., Monath T. P., Kemp G. E., Kerschner J. K., Kirk L. J. 1980; Geographic variation among St. Louis encephalitis virus strains in the viremic responses of avian hosts. American Journal of Tropical Medicine and Hygiene 29:1411–1499
    [Google Scholar]
  5. Brandt W. E., McCown J. M., Gentry M. K., Russell P. K. 1982; Infection enhancement of dengue type 2 virus in the U-937 human monocyte cell line by antibodies to flavivirus cross-reactive determinants. Infection and Immunity 36:1036–1041
    [Google Scholar]
  6. Brugge J., Erickson E., Collett M. S., Erickson R. L. 1978; Peptide analysis of the transformation-specific antigen from avian sarcoma virus-transformed cells. Journal of Virology 26:773–782
    [Google Scholar]
  7. Cane P. A., Gould E. A. 1989; Immunoblotting reveals differences in the accumulation of envelope protein by wild-type and vaccine strains of yellow fever virus. Journal of General Virology 70:557–564
    [Google Scholar]
  8. Cash P., Hendershot L., Bishop D. H. L. 1980; The effects of glycosylation inhibitors on the maturation and intracellular polypeptide synthesis induced by snowshoe hare bunyavirus. Virology 103:235–240
    [Google Scholar]
  9. Centers for Disease Control 1990; St. Louis encephalitis – Florida and Texas, 1990. Morbidity and Mortality Weekly Report 39:756–759
    [Google Scholar]
  10. Centers for Disease Control 1991; St. Louis encephalitis outbreak -Arkansas, 1991. Morbidity and Mortality Weekly Report 40:605–607
    [Google Scholar]
  11. Chamberlain R. W. 1980; History of St. Louis encephalitis. In St. Louis Encephalitis pp 3–61 Edited by Monath T. P. Washington, D. C.: American Public Health Association;
    [Google Scholar]
  12. Chatis P. A., Morrison T. G. 1981; Mutational changes in the vesicular stomatitis virus glycoprotein affect the requirement of carbohydrate in morphogenesis. Journal of Virology 37:37–316
    [Google Scholar]
  13. Clarke D. H., Casals J. 1958; Techniques for hemagglutination and hemagglutination-inhibition with arthropod-borne viruses. American Journal of Tropical Medicine and Hygiene 7:561–573
    [Google Scholar]
  14. Coia G., Parker M. D., Speight G., Byrne M. E., Westaway E. G. 1988; Nucleotide and complete amino acid sequences of Kunjin virus: definitive gene order and characteristics of the virus-specified proteins. Journal of General Virology 69:1–21
    [Google Scholar]
  15. Dalgarno L., Trent D. W., Strauss J. H., Rice C. M. 1986; Partial nucleotide sequence of Murray Valley encephalitis virus genome. Journal of Molecular Biology 187:309–323
    [Google Scholar]
  16. Delwart E. L., Panganiban A. T. 1990; V-Linked glycosylation and reticuloendotheliosis retrovirus envelope glycoprotein function. Virology 197:648–657
    [Google Scholar]
  17. Deubel V., Kinney R. M., Trent D. W. 1986; Nucleotide sequence and deduced amino acid sequence of the structural proteins of dengue type 2, Jamaica genotype. Virology 155:365–377
    [Google Scholar]
  18. Deubel V., Schlesinger J. J., Digoutte J.-P., Girard M. 1987; Comparative immunochemical and biological analysis of African and South American yellow fever viruses. Archives of Virology 94:331–338
    [Google Scholar]
  19. Duksin D., Mahoney W. C. 1982; Relationship of the structural and biological activity of the natural homologues of tunicamycin. Journal of Biological Chemistry 257:3105–3109
    [Google Scholar]
  20. Gentry M. K., Henchal E. A., McCown J. M., Brandt W. E., Dalrymple J. M. 1982; Identification of distinct antigenic determinants on dengue 2 virus using monoclonal antibodies. American Journal of Tropical Medicine and Hygiene 31:548–555
    [Google Scholar]
  21. Gibson R., Schlesinger S., Kornfeld S. 1979; The non-glycosylated glycoprotein of vesicular stomatitis virus is temperature-sensitive and undergoes intracellular aggregation at elevated temperatures. Journal of Biological Chemistry 254:3600–3607
    [Google Scholar]
  22. Gruenberg A., Woo W. S., Biedrzycka A., Wright P. J. 1988; Partial nucleotide sequence and deduced amino acid sequence of the structural proteins of dengue virus type 2, New Guinea C and PuO-218 strains. Journal of General Virology 69:1391–1398
    [Google Scholar]
  23. Guirakhoo F., Heinz F. X., Kunz C. 1989; Epitope model of tick-borne encephalitis virus envelope glycoprotein E: analysis of structural properties, role of carbohydrate side chain, and conformational changes occurring at acidic pH. Virology 169:90–99
    [Google Scholar]
  24. Hahn Y. S., Galler R., Hunkapillar T., Dalrymple J. M., Strauss J. H., Strauss E. G. 1988; Nucleotide sequence of dengue 2 RNA and comparison of the encoded proteins with those of other flaviviruses. Virology 162:167–180
    [Google Scholar]
  25. Heinz F. X., Roehrig J. T. 1990; Flaviviruses. In Immuno-chemistry of Viruses II. The Basis for Serodiagnosis and Vaccines pp 289–305 Edited by Van Regenmortel V. M. H., Neurath A. R. Amsterdam: Elsevier;
    [Google Scholar]
  26. Henchal E. A., Gentry M. K., McCown J. M., Brandt W. E. 1982; Dengue virus-specific and flavivirus group determinants identified by immunofluorescence with monoclonal antibodies. American Journal of Tropical Medicine and Hygiene 31:830–836
    [Google Scholar]
  27. Johnson B. J. B., Kinney R. M., Kost C. L., Trent D. W. 1986; Molecular determinants of alphavirus neurovirulence: nucleotide and deduced protein sequence changes during attenuation of Venezuelan equine encephalitis virus. Journal of General Virology 67:1951–1960
    [Google Scholar]
  28. Kaluza G., Rott R., Schwarz R. T. 1980; Carbohydrate-induced conformational changes of Semliki Forest virus glycoproteins determine antigenicity. Virology 102:286–299
    [Google Scholar]
  29. Karabatsos N. 1980; General characteristics and antigenic relationships. In St. Louis Encephalitis pp 105–158 Edited by Monath T. P. Washington, D.C.: American Public Health Association;
    [Google Scholar]
  30. Karabatsos N. 1985; International Catalogue of Arboviruses and Certain other Viruses of Vertebrates, 3rd edn. San Antonio: American Society of Tropical Medicine and Hygiene;
    [Google Scholar]
  31. Kinney R. M., Trent D. W. 1982; Conservation of tryptic peptides in the structural proteins of viruses in the Venezuelan equine encephalitis complex. Virology 121:345–362
    [Google Scholar]
  32. Knipe D. M., Lodish H. F., Baltimore D. J. 1977; Localization of two cellular forms of vesicular stomatitis viral glycoprotein. Journal of Virology 21:1121–1127
    [Google Scholar]
  33. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  34. Lambris J., Papamichail M., Fessas P. 1979; Fluorescent labelling of proteins of lymphocyte plasma membranes. Journal of Immunological Methods 27:55–59
    [Google Scholar]
  35. McAda P. C., Mason P. W., Schmaljohn C. S., Dalrymple T. M., Mason T. L., Fournier M. J. 1987; Partial nucleotide sequence of Japanese encephalitis virus genome. Virology 158:348–360
    [Google Scholar]
  36. Mandl C., Heinz F., Kunz C. 1988; Sequence of the structural proteins of the tick-borne encephalitis virus (Western subtype) and comparative analysis with other flaviviruses. Virology 166:197–205
    [Google Scholar]
  37. Mason P. W. 1989; Maturation of Japanese encephalitis virus glycoproteins produced by infected mammalian and mosquito cells. Virology 169:354–364
    [Google Scholar]
  38. Mason P. W., McAda P. C., Mason T. L., Fournier M. J. 1987; Sequence of the dengue 1 virus genome in the region encoding the three structural proteins and the major nonstructural protein NS1. Virology 161:262–267
    [Google Scholar]
  39. Mathews J. H., Roehrig J. T. 1984; Elucidation of the topography and determination of the protective epitopes on the E glycoprotein of St. Louis encephalitis virus by passive transfer with monoclonal antibodies. Journal of Immunology 132:1533–1537
    [Google Scholar]
  40. Mathews J. H., Roehrig J. T., Trent D. W. 1985; Role of complement and the Fc portion of immunoglobulin G in immunity to Venezuelan equine encephalomyelitis virus infection with glycoprotein-specific monoclonal antibodies. Journal of Virology 55:594–600
    [Google Scholar]
  41. Monath T. P. 1980; Epidemiology. In St. Louis Encephalitis pp 239–312 Edited by Monath T. P. Washington, D.C.: American Public Health Association;
    [Google Scholar]
  42. Monath T. P. 1990; Flaviviruses. In Virology 2nd edn, pp 955–1004 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  43. Monath T. P., Cropp C. B., Bowen G. S., Kemp G. E., Mitchell C. J., Gardner J. J. 1980; Variation in virulence for mice and rhesus monkeys among St. Louis encephalitis strains of different origin. American Journal of Tropical Medicine and Hygiene 29:948–962
    [Google Scholar]
  44. Osatomi K., Sumiyoshi H. 1990; Complete nucleotide sequence of dengue type 3 virus genome RNA. Virology 176:643–647
    [Google Scholar]
  45. Osatomi K., Fuke I., Tsuru D., Shiba T., Sakaki Y., Sumiyoshi H. 1988; Nucleotide sequence of dengue type 3 virus genome RNA encoding viral structural proteins. Virus Genes 2:199–208
    [Google Scholar]
  46. Peiris J. S. M., Porterfield J. S., Roehrig J. T. 1982; Monoclonal antibodies against the flavivirus West Nile. Journal of General Virology 58:283–289
    [Google Scholar]
  47. Rice C. M., Lencher E. M., Eddy S. R., Shin S. J., Sheets R. L., Strauss J. H. 1985; Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–733
    [Google Scholar]
  48. Roehrig J. T. 1986; The use of monoclonal antibodies in studies of the structural proteins of tagoviruses and flaviviruses. In The Togaviridae and Flaviviridae pp 251–278 Edited by Schlesinger S., Schlesinger M. New York: Plenum Press;
    [Google Scholar]
  49. Roehrig J. T., Mathews J. H., Trent D. W. 1983; Identification of epitopes on the E glycoprotein of Saint Louis encephalitis virus using monoclonal antibodies. Virology 128:118–126
    [Google Scholar]
  50. Sumiyoshi H., Mori C., Fuke I., Morita K., Kihara S., Kondou J., Kikuchi Y., Nagarmatu H., Igarashi A. 1987; Complete nucleotide sequence of Japanese encephalitis virus genome RNA. Virology 161:497–510
    [Google Scholar]
  51. Trent D. W. 1977; Antigenic characterization of flavivirus structural proteins separated by isoelectric focusing. Journal of Virology 22:608–614
    [Google Scholar]
  52. Trent D. W., Grant J. A. 1980; A comparison of New World alphaviruses in the western equine encephalitis complex by immunochemical and oligonucleotide fingerprint techniques. Journal of General Virology 47:261–282
    [Google Scholar]
  53. Trent D. W., Kinney R. M., Johnson B. J., Vorndam A. V., Grant J. A., Deubel V., Rice C. M., Hahn C. 1987; Partial nucleotide sequence of St. Louis encephalitis virus RNA: structural proteins, NS1, ns2a, and ns2b. Virology 156:293–304
    [Google Scholar]
  54. Vidal S., Mottet G., Kolakofsky D., Roux L. 1989; Addition of high-mannose sugars must precede disulfide bond formation for proper folding of Sendai virus glycoproteins. Journal of Virology 63:892–900
    [Google Scholar]
  55. Wengler G., Castle E., Leidner U., Nowak T., Wengler G. 1985; Sequence analysis of the membrane protein V3 of the flavivirus West Nile virus and of its gene. Virology 147:264–274
    [Google Scholar]
  56. Westaway E. G., McKimm R. W., McLeod L. G. 1977; Heterogeneity among flavivirus proteins separated by slab gels. Archives of Virology 53:305–312
    [Google Scholar]
  57. Westaway E. G., Brinton M. A., Gaidamovich S. Ya., Horzinek M. C., Igarashi A., Kaariainen L., Lvov K. D., Porterfield J. S., Russell P. K., Trent D. W. 1985; Flaviviridae. Intervirology 24:183–192
    [Google Scholar]
  58. Winkler G., Heinz F. X., Kunz C. 1987; Studies on the glycosylation of flavivirus E proteins and the role of carbohydrate in the antigenic structure. Virology 159:237–243
    [Google Scholar]
  59. Zhao B., Mackow E., Buckler-White A., Markoff L., Chanock R. M., Lai C. J., Makino M. 1986; Cloning full length dengue type 4 viral DNA sequences: analysis of genes coding for structural proteins. Virology 155:77–88
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-12-2653
Loading
/content/journal/jgv/10.1099/0022-1317-74-12-2653
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error