1887

Abstract

All characterized alphaherpesviruses encode a protein whose N-terminal region contains a novel zinc-binding motif, the CHC domain. Homology between the different proteins is in general limited to key residues in this domain. In order to identify a separate landmark site in the CHC protein encoded by varicella-zoster virus gene namely the region required for nuclear localization, we have analysed a range of mutants in transient expression and immunofluorescence experiments. A basic region (RGAKRR) at residues 387 to 392 was found to be required for nuclear localization, and residues 390 and 391 were critical.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-11-3229
1994-11-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/11/JV0750113229.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-11-3229&mimeType=html&fmt=ahah

References

  1. Cabirac G. F., Mahalingham R., Wellish M., Gilden D. H. 1990; Transactivation of viral tk promoters by proteins encoded by varicella-zoster virus open reading frames 61 and 62. Virus Research 15:57–68
    [Google Scholar]
  2. Cheung A. K. 1991; Cloning of the latency gene and the early protein 0 gene of pseudorabies virus. Journal of Virology 65:5260–5271
    [Google Scholar]
  3. Davison A. J., Moss B. 1990; New vaccinia virus recombination plasmids incorporating a synthetic lane promoter for high level expression of foreign proteins. Nucleic Acids Research 18:4285–4286
    [Google Scholar]
  4. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  5. Dingwall C., Laskey R. A. 1991; Nuclear targeting sequences- a consensus. Trends in Biochemical Sciences 16:478–481
    [Google Scholar]
  6. Elroy-Stein O., Moss B. 1992; Protein expression. In Current Protocols in Molecular Biology 2 pp. 16.19.1–16.19.9 Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. Edited by New York: J. Wiley & Sons;
    [Google Scholar]
  7. Everett R. D., Preston C. M., Stow N. D. 1991; Functional and genetic analysis of the role of VmwllO in herpes simplex virus replication. In Herpesvirus Transcription and its Regulation pp. 49–76 Wagner E. K. Edited by Boca Raton: CRC Press;
    [Google Scholar]
  8. Everett R. D., Barlow P., Milner A., Luisi B., Orr A., Hope G., Lyon D. 1993; A novel arrangement of zinc-binding residues and secondary structure in the C3HC4 motif of an alpha herpes virus protein family. Journal of Molecular Biology 234:1038–1047
    [Google Scholar]
  9. Freemont P. S., Hanson I. M., Trowsdale J. 1991; A novel cysteine-rich sequence motif. Cell 64:483–484
    [Google Scholar]
  10. Innis M. A., Gelfand D. H. 1990; Optimization of PCRs. In PCR Protocols pp. 3–12 Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. Edited by San Diego: Academic Press;
    [Google Scholar]
  11. McGeoch D. J., Cunningham C., McIntyre G., Dolan A. 1991; Comparative sequence analysis of the long repeat regions and adjoining parts of the long unique regions in the genomes of herpes simplex viruses types 1 and 2. Journal of General Virology 72:3057–3075
    [Google Scholar]
  12. Moriuchi H., Moriuchi M., Smith H. A., Straus S. E., Cohen J. I. 1992; Varicella-zoster virus open reading frame 61 protein is functionally homologous to herpes simplex virus type 1 ICP0. Journal of Virology 66:7303–7308
    [Google Scholar]
  13. Moriuchi H., Moriuchi M., Straus S. E., Cohen J. I. 1993; Varicella-zoster virus (VZV) open reading frame 61 protein trans- activates VZV gene promoters and enhances the infectivity of VZV DNA. Journal of Virology 67:4290–4295
    [Google Scholar]
  14. Mullen M. -A., Ciufo D. M., Hayward G. S. 1994; Mapping of intracellular localization domains and evidence for colocalization interactions between the IE110 and IE175 nuclear transactivation proteins of herpes simplex virus. Journal of Virology 68:3250–3266
    [Google Scholar]
  15. Nagpal S., Ostrove J. M. 1991; Characterization of a potent varicella-zoster virus-encoded trans-repressor. Journal of Virology 65:5289–5296
    [Google Scholar]
  16. Perera L. P., Mosca J. D., Ruyechan W. T., Hay J. 1992; Regulation of varicella-zoster virus gene expression in human T lymphocytes. Journal of Virology 66:5298–5304
    [Google Scholar]
  17. Perry L. J., Rixon F. J., Everett R. D., Frame M. C., McGeoch D. J. 1986; Characterization of the IE110 gene of herpes simplex virus type 1. Journal of General Virology 67:2365–2380
    [Google Scholar]
  18. Stevenson D., Colman K. L., Davison A. J. 1992; Characterization of the varicella-zoster virus gene 61 protein. Journal of General Virology 73:521–530
    [Google Scholar]
  19. Stow N. D., Hammarsten O., Arbuckle M. I., Elias P. 1993; Inhibition of herpes simplex virus type 1 DNA replication by mutant forms of the origin-binding protein. Virology 196:413–418
    [Google Scholar]
  20. Telford E. A. R., Watson M. S., McBride K., Davison A. J. 1992; The DNA sequence of equine herpesvirus-1. Virology 189:304–316
    [Google Scholar]
  21. Wirth U. V., Fraefel C., Vogt B., Vlcek C., Paces V., Schwyzer M. 1992; Immediate-early RNA 2.9 and early RNA 2.6 of bovine herpesvirus 1 are 3′ coterminal and encode a putative zinc finger transactivator protein. Journal of Virology 66:2763–2772
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-11-3229
Loading
/content/journal/jgv/10.1099/0022-1317-75-11-3229
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error