1887

Abstract

Nucleotide sequencing of RNA segment 5 from seven strains of group A rotavirus has been carried out to investigate the extent of diversity and conservation, as well as possible selective pressures involved in driving the fixation of sequence changes in this gene. Analyses of the derived sequences revealed that sequence conservation could not be correlated either with rotavirus serotype or the species of origin of the virus strain. These sequences together with other published and unpublished sequences of this gene have raised the total number available for comparison to 17. Alignment of all the available sequences revealed that only 88 amino acid positions (17·6%) in the protein encoded by gene 5 (VP5) are absolutely conserved but that the metalbinding motif reported by others is conserved in all sequences. Despite the high degree of sequence divergence, alignment of secondary structure predictions for VP5 showed a high level of conservation, suggesting that constraints on sequence divergence may operate at the level of overall higher-order structure of the encoded protein.The new rotavirus gene 5 sequences appearing in this paper have been deposited with the EMBL sequence database and given the following accession numbers: Z12105 (bovine strain B223), Z12106 (human strain Hochi), Z12107 (porcine strain OSU), Z12108 (bovine strain UKtc), Z32534 (human strain St 3), Z32535 (simian strain RRV), Z32552 (human strain 69M).

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-12-3413
1994-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/12/JV0750123413.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-12-3413&mimeType=html&fmt=ahah

References

  1. Andrew M. E., Boyle D. B., Coupar B. E. H., Reddy D., Bellamy A. R., Both G. W. 1992; Vaccinia rotavirus VP7 recombinants protect mice against rotavirus induced diarrhea. Vaccine 10:185–191
    [Google Scholar]
  2. Both G. W., Bellamy A. R., Street J. E., Seigman L. J. 1982; A general strategy for cloning double stranded RNA: nucleotide sequence of the simian 11 rotavirus gene 8. Nucleic Acids Research 10:7075–7088
    [Google Scholar]
  3. Bremont M., Charpilienne A., Chabanne D., Cohen J. 1987; Nucleotide sequence and expression in Escherichia coliof the gene encoding the nonstructural protein NCVP2 of bovine rotavirus. Virology 161:138–144
    [Google Scholar]
  4. Broome R. L., Vo P. T., Ward R. L., Clark H. F., Greenberg H. B. 1993; Murine rotavirus genes encoding outer capsid proteins VP4 and VP7 are not the major determinants of host range restriction and virulence. Journal of Virology 67:2448–2455
    [Google Scholar]
  5. Brottier P., Nandi P., Bremont M., Cohen J. 1992; Bovine rotavirus segment 5 protein expressed in the baculovirus system interacts with zinc and RNA. Journal of General Virology 73:1931–1938
    [Google Scholar]
  6. Burke B., Mccrae M. A., Desselberger U. 1994; Sequence analysis of two porcine rotaviruses differing in growth in vitroand in pathogenicity: distinct VP4 sequences and conservation of NS53, VP6 and VP7 genes. Journal of General Virology 75:2205–2212
    [Google Scholar]
  7. Clarke I. N., McCrae M. A. 1983; The molecular biology of rotaviruses. VI. RNA species-specific terminal conservation in rotaviruses. Journal of General Virology 64:1877–1884
    [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  9. Estes M. K., Cohen J. 1989; Rotavirus gene structure and function. Microbiology Reviews 53:410–449
    [Google Scholar]
  10. Flewett T. H., Woode G. N. 1978; Rotaviruses. Brief review. Archives of Virology 57:1–25
    [Google Scholar]
  11. Gallegos C. O., Patton J. T. 1989; Characterization of rotavirus replication intermediates. A model for the assembly of single shelled particles. Virology 172:616–627
    [Google Scholar]
  12. Holmes I. H. 1983; Rotaviruses. In The Reoviridae, pp 359–423 Joklik W. K. Edited by New York: Plenum Press;
    [Google Scholar]
  13. Hua J., Patton J. T. 1994; The carboxyl-half of the rotavirus nonstructural protein NS53 (NSP1) is not required for virus replication. Virology 198:567–576
    [Google Scholar]
  14. Hua J., Mansell E. A., Patton J. T. 1993; Comparative analysis of the rotavirus NS53 gene: conservation of basic and cysteine rich regions in the protein and possible stem loop structures in the RNA. Virology 196:372–378
    [Google Scholar]
  15. Hua J., Chen X., Patton J. T. 1994; Deletion mapping of the rotavirus metalloprotein NS53 (NSP1): the conserved cysteine rich region is essential for virus specific RNA binding. Journal of Virology 68:3990–4000
    [Google Scholar]
  16. Johnson M., McCrae M. A. 1989; Molecular biology of rotaviruses. VIII. Quantitative analysis of the regulation of gene expression during virus replication. Journal of Virology 63:2048–2055
    [Google Scholar]
  17. McCrae M. A., Faulkner-Valle G. P. 1981; Molecular biology of rotaviruses. I. Characterization of the basic growth parameters and pattern of macromolecular synthesis. Journal of Virology 39:490–496
    [Google Scholar]
  18. McCrae M. A., McCorquodale J. G. 1982a; Molecular biology of rotaviruses. II. Identification of the protein coding assignments of calf rotavirus genome RNA species. Virology 117:435–143
    [Google Scholar]
  19. McCrae M. A., McCorquodale J. G. 1982b; Molecular biology of rotaviruses. IV. Molecular cloning of the bovine rotavirus genome. Journal of Virology 44:1076–1079
    [Google Scholar]
  20. McCrae M. A., McCorquodale J. G. 1983; Molecular biology of rotaviruses. V. Terminal structure of viral RNA species. Virology 126:204–212
    [Google Scholar]
  21. McCrae M. A., McCorquodale J. G. 1987; Expression of rotavirus proteins in E. coli. Gene 55:9–18
    [Google Scholar]
  22. Mitchell D. B., Both G. W. 1990; Conservation of a potential metal binding motif despite extensive sequence diversity in the rotavirus nonstructural protein NS53. Virology 174:618–621
    [Google Scholar]
  23. Offit P. A., Coupar B. E. H., Svoboda Y. M., Jenkins R. J., McCrae M. A., Abraham A., Hill N. L., Boyle D. B., Andrew M. E., Both G. W. 1994; Induction of rotavirus specific cytotoxic T lymphocytes by vaccinia virus recombinants expressing individual rotavirus genes. Virology 198:10–16
    [Google Scholar]
  24. Patton J. T. 1986; Synthesis of simian rotavirus SA11 double stranded RNA in a cell free system. Virus Research 6:217–233
    [Google Scholar]
  25. Patton J. T., Gallegos C. O. 1988; Structure and protein composition of the rotavirus replicase particle. Virology 166:358–365
    [Google Scholar]
  26. Pedley S., Bridger J. C., Brown J. F., McCrae M. A. 1983; Molecular characterization of rotaviruses with distinct group antigens. Journal of General Virology 64:2093–2101
    [Google Scholar]
  27. Phillips R. E., Rowland-Jones S., Nixon D. F., Gotch F. M., Edwards J. P., Olunlesi A. O., Elvin J. G., Rothbard J. A., Bangham C. R. M., Rizza C. R., McMichael A. J. 1991; Human immunodeficiency virus genetic variation that can escape cytotoxic T-cell recognition. Nature; London: 354453–157
    [Google Scholar]
  28. Rost B., Sander C. 1993; Prediction of protein structure at better than 70 % accuracy. Journal of Molecular Biology 232:584–599
    [Google Scholar]
  29. Rost B., Sander C., Schneider R. 1994; PHD - an automatic mail server for protein secondary structure prediction. Computer Applications in the Biosciences 10:53–60
    [Google Scholar]
  30. Tian Y., Tarlow O., Ballard A., Desselberger D., McCrae M. A. 1993; Genomic concatemerization/deletion in rotaviruses - a new mechanism for generating rapid genetic change of potential epidemiologic importance. Journal of Virology 67:6625–6632
    [Google Scholar]
  31. Xu L., Harbour D., McCrae M. A. 1990; The application of the polymerase chain reaction to the detection of rotavirus in faeces. Journal of Virological Methods 27:29–38
    [Google Scholar]
  32. Xu L., Harbour D., McCrae M. A. 1991; Sequence of the gene encoding the major neutralization antigen (VP7) of serotype 10 rotavirus. Journal of General Virology 72:177–180
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-12-3413
Loading
/content/journal/jgv/10.1099/0022-1317-75-12-3413
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error