1887

Abstract

The proteins predicted to be encoded by varicella-zoster virus (VZV) genes 47 and 66 display sequence similarity to the serine/threonine family of protein kinases. Homologues of gene 47 exist in -, and -herpesviruses but homologues of gene 66 are specific to the - herpesviruses. Monospecific rabbit antisera were raised against two separate fusion proteins constructed from a portion of each protein fused to the carboxy terminus of -galactosidase. These antisera were used to characterize the 47 and 66 proteins in VZV-infected cells and in cells infected with vaccinia virus recombinants expressing each protein. The 47 protein is a 54K phosphoprotein which is distributed between the cytoplasmic and nuclear compartments of VZV-infected cells and is associated with the capsid/tegument fraction of purified VZV particles. Gene 66 encodes a 48K phosphoprotein when expressed by VZV or a vaccinia virus recombinant, and, in the latter case, the 66 protein was located exclusively in the cytoplasm. The 47 protein immuno- precipitated from VZV-infected cells could be phosphorylated , but the same protein produced by transcription and translation could not. This and other evidence indicates that additional proteins induced or encoded by VZV may be involved in the phosphorylation of the 47 protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-2-317
1994-02-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/2/JV0750020317.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-2-317&mimeType=html&fmt=ahah

References

  1. Albrecht J. -C., Nicholas J., Biller D., Cameron K. R., Bie-Singer B., Newman C., Wittmann S., Craxton M. A., Coleman H., Fleckenstein B., Honess R. W. 1992; Primary structure of the herpesvirus saimiri genome. Journal of Virology 66:5047–5058
    [Google Scholar]
  2. Chee M. S., Lawrence G. L., Barrell B. G. 1989; Alpha-, beta- and gammaherpesviruses encode a putative phosphotransferase. Journal of General Virology 70:1151–1160
    [Google Scholar]
  3. Colle C. F.III Flowers C. C., O’Callaghan D. J. 1992; Open reading frames encoding a protein kinase, homolog of glycoprotein gX of pseudorabies virus, and a novel glycoprotein map within the unique short segment of equine herpesvirus type 1. Virology 188:545–557
    [Google Scholar]
  4. Coulter L. J., Moss H. W. M., Lang J., Mcgeoch D. J. 1993; A mutant of herpes simplex virus type 1 in which the UL13 protein kinase gene is disrupted. Journal of General Virology 74:387–395
    [Google Scholar]
  5. Cunningham C., Davison A. J., Dolan A., Frame M. C., Mcgeoch D. J., Meredith D. M., Moss H. W. M., Orr A. C. 1992; The UL13 virion protein of herpes simplex virus type 1 is phosphorylated by a novel virus-induced protein kinase. Journal of General Virology 73:303–311
    [Google Scholar]
  6. Davison A. J., Moss B. 1989; Structure of vaccinia virus early promoters. Journal of Molecular Biology 210:749–769
    [Google Scholar]
  7. Davison A. J., Moss B. 1990; New vaccinia virus recombination plasmids incorporating a synthetic late promoter for high level expression of foreign proteins. Nucleic Acids Research 18:4285–4286
    [Google Scholar]
  8. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  9. De Wind N., Domen J., Berns A. 1992; Herpesviruses encode an unusual protein-serine/threonine kinase which is nonessential for growth in cultured cells. Journal of Virology 66:5200–5209
    [Google Scholar]
  10. Dumas A. M., Geelen J. L. M. C., Maris W., Van Der Noordaa J. 1980; Infectivity and molecular weight of varicella-zoster virus DNA. Journal of General Virology 47:233–235
    [Google Scholar]
  11. Dumas A. M., Geelen J. L. M. C., Weststrate M. W., Wertheim P., Van Der Noordaa J. 1981; XbaI, PstI, and BglII restriction enzyme maps of the two orientations of the varicella-zoster virus genome. Journal of Virology 39:390–400
    [Google Scholar]
  12. Edelman A. M., Blumenthal D. K., Krebs E. G. 1987; Protein serine/threonine kinases. Annual Review of Biochemistry 56:567–613
    [Google Scholar]
  13. Elroy-Stein O., Moss B. 1992; Protein expression. In Current Protocols in Molecular Biology 2 pp. 16.19.1–16.19.9 Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. Edited by New York: John Wiley & Sons;
    [Google Scholar]
  14. Frame M. C., Purves F. C., Mcgeoch D. J., Marsden H. S., Leader D. P. 1987; Identification of the herpes simplex virus protein kinase as the product of viral gene US3. Journal of General Virology 68:2699–2704
    [Google Scholar]
  15. Hanks S. K., Quinn A. M., Hunter T. 1988; The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52
    [Google Scholar]
  16. Harlow E., Lane D. 1988 Antibodies: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  17. Hunter T., Cooper J. A. 1985; Protein-tyrosine kinases. Annual Review of Biochemistry 54:897–930
    [Google Scholar]
  18. Mcgeoch D. J., Davison A. J. 1986; Alphaherpesviruses possess a gene homologous to the protein kinase gene family of eukaryotes and retroviruses. Nucleic Acids Research 14:1765–1777
    [Google Scholar]
  19. Mole S. E., Lane D. P. 1987; Production of monoclonal antibodies against fusion proteins produced in Escherichia coli. In DNA Cloning: A Practical Approach 3 pp. 113–139 Glover D. M. Edited by Oxford: IRL Press;
    [Google Scholar]
  20. Murphy M., Schenk P., Lankinen H. M., Cross A. M., Taylor P., Owsianka A., Hope R. G., Ludwig H., Marsden H. S. 1989; Mapping of epitopes on the 65K DNA-binding protein of herpes simplex virus type 1. Journal of General Virology 70:2357–2364
    [Google Scholar]
  21. Nagesha H. S., Crabb B. S., Studdert M. J. 1993; Analysis of the nucleotide sequence of five genes at the left end of the unique short region of the equine herpesvirus 4 genome. Archives of Virology 128:143–154
    [Google Scholar]
  22. Ng T. I., Grose C. 1992; Serine protein kinase associated with varicella-zoster virus ORF 47. Virology 191:9–18
    [Google Scholar]
  23. Purves F. C., Roizman B. 1992; The UL13 gene of herpes simplex virus 1 encodes the functions for posttranslational processing associated with phosphorylation of the regulatory protein α22. Proceedings of the National Academy of Sciences U.S.A: 897310–7314
    [Google Scholar]
  24. Purves F. C., Donella-Deana A., Marchiori F., Leader D. P., Pinna L. A. 1986; The substrate specificity of the protein kinase induced in cells infected with herpesvirus: studies with synthetic substrates indicate structural requirements distinct from other protein kinases. Biochimica et biophysica acta 889:208–215
    [Google Scholar]
  25. Purves F. C., Longnecker R. M., Leader D. P., Roizman B. 1987; Herpes simplex virus 1 protein kinase is encoded by open reading frame US3 which is not essential for virus growth in cell culture. Journal of Virology 61:2896–2901
    [Google Scholar]
  26. Purves F. C., Spector D., Roizman B. 1991; The herpes simplex virus 1 protein kinase encoded by the US3 gene mediates posttranslational modification of the phosphoprotein encoded by the UL34 gene. Journal of Virology 65:5757–5764
    [Google Scholar]
  27. Purves F. C., Spector D., Roizman B. 1992; UL34, the target of the herpes simplex virus US3 protein kinase, is a membrane protein which in its unphosphorylated state associates with novel phospho- proteins. Journal of Virology 66:4295–1303
    [Google Scholar]
  28. Randall R.E, Dinwoodie N. 1986; Intranuclear localization of herpes simplex virus immediate-early and delayed-early proteins: evidence that ICP 4 is associated with progeny virus DNA. Journal of General Virology 67:2163–2177
    [Google Scholar]
  29. Ross L. J. N., Binns M. M., Pastorek J. 1991; DNA sequence and organization of genes in a 5·5 kbp EcoRI fragment mapping in the short unique segment of Marek’s disease virus (strain RB1B). Journal of General Virology 72:949–954
    [Google Scholar]
  30. Rüther U., Müller-Hill B. 1983; Easy identification of cDNA clones. EMBO Journal 2:1791–1794
    [Google Scholar]
  31. Smith R. F., Smith T. F. 1989; Identification of new protein kinase-related genes in three herpesviruses, herpes simplex virus, varicella-zoster virus, and Epstein-Barr virus. Journal of Virology 63:450–455
    [Google Scholar]
  32. Stevenson D., Colman K. L., Davison A. J. 1992; Characterization of the varicella-zoster virus gene 61 protein. Journal of General Virology 73:521–530
    [Google Scholar]
  33. Telford E. A. R., Watson M. S., Mcbride K., Davison A. J. 1992; The DNA sequence of equine herpesvirus 1. Virology 189:304–316
    [Google Scholar]
  34. Van Zijl M., Van Der Gulden H., De Wind N., Gielkens A., Berns A. 1990; Identification of two genes in the unique short region of pseudorabies virus: comparison with herpes simplex virus and varicella-zoster virus. Journal of General Virology 71:1747–1755
    [Google Scholar]
  35. Zhang G., Stevens R., Leader D. P. 1990; The protein kinase encoded in the short unique region of pseudorabies virus: description of the gene and identification of its product in virions and in infected cells. Journal of General Virology 71:1757–1765
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-2-317
Loading
/content/journal/jgv/10.1099/0022-1317-75-2-317
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error