1887

Abstract

The intracellular distributions of three herpes simplex virus type 1 (HSV-1) capsid proteins, VP23, VP5 and VP22a, were examined using vaccinia virus and plasmid expression systems. During infection of cells with HSV-1 wild-type virus, all three proteins were predominantly located in the nucleus, which is the site of capsid assembly. However, when expressed in the absence of any other HSV-1 proteins, although VP22a was found exclusively in the nucleus as expected, VP5 and VP23 were distributed throughout the cell. Thus nuclear localization is not an intrinsic property of these proteins but must be mediated by one or more HSV-1-induced proteins. Co-expression experiments demonstrated that VP5 was efficiently transported to the nucleus in the presence of VP22a, but the distribution of VP23 was unaffected by the presence of either or both of the other two proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-5-1091
1994-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/5/JV0750051091.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-5-1091&mimeType=html&fmt=ahah

References

  1. Baker T. S., Newcomb W. W., Booy F. P., Brown J. C., Steven A. C. 1990; Three-dimensional structures of maturable and abortive capsids of equine herpesvirus 1 from cryoelectron microscopy. Journal of Virology 64:563–573
    [Google Scholar]
  2. Bibor-Hardy V., Dagenais A., Simard R. 1985; In situ localization of the major capsid protein during lytic infection by herpes simplex virus. Journal of General Virology 66:897–901
    [Google Scholar]
  3. Brown S. M., Ritchie D. A., Subak-Sharpe J. H. 1973; Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangment into complementation groups and recombination analysis leading to a linkage map. Journal of General Virology 18:329–346
    [Google Scholar]
  4. Cohen G. H., Poncedeleon M., Diggelmann H., Lawrence W. C., Vernon S. K., Eisenberg R. J. 1980; Structural analysis of the capsid polypeptides of herpes simplex virus types 1 and 2. Journal of Virology 34:521–531
    [Google Scholar]
  5. Costa R. H., Cohen G., Eisenberg R., Long D., Wagner E. 1984; Direct demonstration that the abundant 6-kilobase herpes simplex virus type 1 mRNA mapping between 0·23 and 0·27 map units encodes the major capsid protein VP5. Journal of Virology 49:287–292
    [Google Scholar]
  6. Davison A. J., Moss B. 1989; Structure of vaccinia virus early promoters. Journal of Molecular Biology 210:749–769
    [Google Scholar]
  7. Davison A. J., Moss B. 1990; New vaccinia virus recombination plasmids incorporating a synthetic late promoter for high level expression of foreign proteins. Nucleic Acids Research 18:4285–4286
    [Google Scholar]
  8. Davison M. D., Rixon F. J., Davison A. J. 1992; Identification of genes encoding two capsid proteins (VP24 and VP26) of herpes simplex virus type 1. Journal of General Virology 73:2709–2713
    [Google Scholar]
  9. Desai P., Deluca N. A., Glorioso J. C., Person S. 1993; Mutations in herpes simplex virus type 1 genes encoding VP5 and VP23 abrogate capsid formation and cleavage of replicated DNA. Journal of Virology 67:1357–1364
    [Google Scholar]
  10. Gibson W., Roizman B. 1972; Proteins specified by herpes simplex virus. VIII. Characterization and composition of multiple capsid forms of subtypes 1 and 2. Journal of Virology 10:1044–1052
    [Google Scholar]
  11. Knipe D. M., Spang A. E. 1982; Definition of a series of stages in the association of two herpesviral proteins with the cell nucleus. Journal of Virology 43:314–324
    [Google Scholar]
  12. Liu F., Roizman B. 1991a; The promoter, transcriptional unit, and coding sequences of the herpes simplex virus 1 family 35 proteins are contained within and in frame with the UL26 open reading frame. Journal of Virology 65:206–212
    [Google Scholar]
  13. Liu F., Roizman B. 1991b; The herpes simplex virus 1 gene encoding a protease also contains within its coding domain the gene encoding the more abundant substrate. Journal of Virology 65:5149–5156
    [Google Scholar]
  14. Liu F., Roizman B. 1992; Differentiation of multiple domains in the herpes simplex virus 1 protease encoded by the UL26 gene. Proceedings of the National Academy of Sciences U.S.A: 892076–2080
    [Google Scholar]
  15. Mcgeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., Mcnab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  16. Mcnabb D. S., Courtney R. J. 1992; Identification and characterization of the herpes simplex virus type 1 virion protein encoded by the UL35 open reading frame. Journal of Virology 66:2653–2663
    [Google Scholar]
  17. Newcomb W. W., Brown J. C. 1989; Use of Ar+ plasma etching to localize structural proteins in the capsid of herpes simplex virus type 1. Journal of Virology 63:4697–4702
    [Google Scholar]
  18. Newcomb W. W., Brown J. C. 1991; Structure of the herpes simplex virus capsid: effects of extraction with guanidine hydrochloride and partial reconstitution of extracted capsids. Journal of Virology 65:613–620
    [Google Scholar]
  19. Newcomb W. W., Trus B. L., Booy F. P., Steven A. C., Wall J. S., Brown J. C. 1993; Structure of the herpes simplex virus capsid: molecular composition of the pentons and triplexes. Journal of Molecular Biology 232:499–511
    [Google Scholar]
  20. Nicholson P. 1992 Analysis of four capsid protein genes of HSV-1 Ph.D. thesis University of Glasgow:
    [Google Scholar]
  21. Person S., Laquerre S., Desai P., Hempel J. 1993; Herpes simplex virus type 1 capsid protein, VP21, originates within the UL26 open reading frame. Journal of General Virology 74:2269–2273
    [Google Scholar]
  22. Pertuiset B., Boccara M., Cebrian J., Berthelot N., Chouster-Man S., Puvion-Dutilleul F., Sisman J., Sheldrick P. 1989; Physical mapping and nucleotide sequence of a herpes simplex virus type 1 gene required for capsid assembly. Journal of Virology 63:2169–2179
    [Google Scholar]
  23. Powell K. L., Watson D. H. 1975; Some structural antigens of herpes simplex virus type 1. Journal of General Virology 29:167–178
    [Google Scholar]
  24. Preston V. G., Coates J.A.V., Rixon F. J. 1983; Identification and characterization of a herpes simplex virus gene product required for encapsidation of virus DNA. Journal of Virology 45:1056–1064
    [Google Scholar]
  25. Preston V. G., Rixon F. J., Mcdougall I. M., Mcgregor M., Alkobaisi M. F. 1992; Processing of the herpes simplex virus assembly protein ICP35 near its carboxy-terminal end requires the product of the whole UL26 open reading frame. Virology 186:87–98
    [Google Scholar]
  26. Quinlan M. P., Knipe D. M. 1983; Nuclear localization of herpesvirus proteins: potential role for the cellular framework. Molecular and Cellular Biology 3:315–324
    [Google Scholar]
  27. Rixon F. J., Cross A. M., Addison C., Preston V. G. 1988; The products of herpes simplex virus type 1 gene UL26 which are involved in DNA packaging are strongly associated with empty but not with full capsids. Journal of General Virology 69:2879–2891
    [Google Scholar]
  28. Rixon F. J., Davison M. D., Davison A. J. 1990; Identification of the genes encoding two capsid proteins of herpes simplex virus type 1 by direct amino acid sequencing. Journal of General Virology 71:1211–1214
    [Google Scholar]
  29. Rose J. K., Buonocore L., Whitt M. A. 1991; A new cationic liposome reagent mediating nearly quantitative transfection of animal cells. Biotechniques 10:520–525
    [Google Scholar]
  30. Schrag J. D., Prasad B.V.V., Rixon F. J., Chiu W. 1989; Three-dimensional structure of the HSV-1 nucleocapsid. Cell 56:651–660
    [Google Scholar]
  31. Sherman G., Bachenheimer S. L. 1988; Characterization of intranuclear capsids made by ts morphogenic mutants of HSV-1. Virology 163:471–480
    [Google Scholar]
  32. Stow N. D., Hammarsten O., Arbuckle M. I., Elias P. 1993; Inhibition of herpes simplex virus type 1 DNA replication by mutant forms of the origin-binding protein. Virology 196:413–418
    [Google Scholar]
  33. Trus B. L., Newcomb W. W., Booy F. P., Brown J. C., Steven A. C. 1992; Distinct monoclonal antibodies separately label the hexons or the pentons of herpes simplex virus capsid. Proceedings of the National Academy of Sciences U.S.A: 8911508–11512
    [Google Scholar]
  34. Weinheimer S. P., Mccann P. J., O’BOYLE D. R., Stevens J. T., Boyd B. A., Drier D. A., Yamanaka G. A., Diianni C. L., Deckman I. C., Cordingly M. G. 1993; Autoproteolysis of herpes simplex virus type 1 protease releases an active catalytic domain found in intermediate capsid particles. Journal of Virology 67:5813–5822
    [Google Scholar]
  35. Weller S. K., Carmichael E. P., Aschman D. P., Goldstein D. J., Schaffer P. A. 1987; Genetic and phenotypic characterization of mutants in four essential genes that map to the left half of HSV- 1 UL DNA. Virology 161:198–210
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-5-1091
Loading
/content/journal/jgv/10.1099/0022-1317-75-5-1091
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error