1887

Abstract

New classes of mutants of influenza virus A/seal/Mass/1/80 are described in which the haemagglutinins (HA) have lost their protease cleavability by trypsin, but can be activated by elastase, chymotrypsin or thermolysin in different cell types. The same proteases that were required for activation of infectivity of the mutants also activated haemolysis and cell-fusing properties. The protease activation (pa)-mutants were nonpathogenic for chickens, but induced a protective immune response against a highly pathogenic challenge virus. The failure of the mutants to be activated by trypsin, but instead to be activated by the other proteases employed, was related to amino acid exchanges around the HA cleavage site. The cleavability of the chymotrypsin and elastase pa-mutants is most likely determined by replacement of Arg-1 by neutral amino acids such as Ile, Thr, Met or Leu, depending on the substrate specificity of the activating proteases. Cleavage activation of the thermolysin pa-mutants, on the other hand, became possible by insertion of a single Leu residue at position 4 of the HA polypeptide, which compensates for the loss of the Gly residue at the N terminus of the fusion peptide due to thermolysin cleavage. The correction of the mutations in revertants confirmed the conclusions drawn from sequence analyses of the pa-mutants.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-3-625
1995-03-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/3/JV0760030625.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-3-625&mimeType=html&fmt=ahah

References

  1. Bosch F. X., Orlich M., Klenk H.-D., Rott R. 1979; The structure of the hemagglutinin, the determinant for the pathogenicity of influenza virus. Virology 95:197–207
    [Google Scholar]
  2. Daniels R. S., Douglas A. R., Skehel J. J., Wiley D. C. 1983; Analyses of the antigenicity of influenza haemagglutinin at the pH optimum for virus-mediated membrane fusion. Journal of General Virology 64:1657–1662
    [Google Scholar]
  3. Daniels R. S., Downie J. C., Hay A. J., Knossow M., Skehel J. J., Wang M. L., Wiley D. C. 1985; Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell 40:431–439
    [Google Scholar]
  4. Garten W., Bosch F. X., Linder D., Rott R., Klenk H.-D. 1981; Proteolytic activation of the influenza virus hemagglutinin: the structure of the cleavage site and the enzymes involved in cleavage. Virology 115:361–374
    [Google Scholar]
  5. Gething M. J., Doms R. W., York D., White J. 1986; Studies of the mechanism of membrane fusion: site-specific mutagenesis of the hemagglutinin of influenza virus. Journal of Cell Biology 102:11–23
    [Google Scholar]
  6. Gotoh B., Ogasawara T., Toyoda T., Inocencio N. M., Hama-guchi M., Nagai Y. 1990; An endoprotease homologous to the blood clotting factor X as a determinant of viral tropism in chicken embryo. EMBO Journal 9:4189–4195
    [Google Scholar]
  7. Günther J., Glatthaar B., Döller G., Garten W. 1993; A HI hemagglutinin of a human influenza A virus with a carbohydrate-modulated receptor binding site and an unusual cleavage site. Virus Research 27:147–160
    [Google Scholar]
  8. Horimoto T., Kawaoka Y. 1994; Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. Journal of Virology 68:3120–3128
    [Google Scholar]
  9. Hsu M.-C., Scheid A., Choppin P. W. 1987; Protease activation mutants of Sendai virus: sequence analysis of the mRNA of the fusion protein (F) gene and direct identification of the cleavage-activation site. Virology 156:84–90
    [Google Scholar]
  10. Itoh M., Shibuta Η., Homma M. 1987; Single amino acid substitution of Sendai virus at the cleavage site of the fusion protein confers trypsin resistance. Journal of General Virology 68:2939–2944
    [Google Scholar]
  11. Kido H., Yokogoshi K., Sakai M., Tashiro M., Kishino Y., Fukutomi A., Katumuma M. 1992; Isolation and characterization of a novel trypsin-like protease found in rat bronchiolar epithelial Clara cells: a possible activator of the viral fusion glycoprotein. Journal of Biological Chemistry 267:13573–13579
    [Google Scholar]
  12. Kido H., Kamoshita K., Fukotomi A., Katsunuma N. 1993; Processing protease for gpl60 human immunodeficiency virus type 1 envelope glycoprotein precursor in human T4+ lymphocytes. Journal of Biological Chemistry 268:13406–13413
    [Google Scholar]
  13. Klenk H.-D., Rott R. 1988; The molecular biology of influenza virus pathogenicity. Advances in Virus Research 34:247–281
    [Google Scholar]
  14. Klenk H.-D., Rott R., Orlich M., Blodorn J. 1975; Activation of influenza A viruses by trypsin treatment. Virology 68:426–439
    [Google Scholar]
  15. Lazarowitz S. G., Choppin P. W. 1975; Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology 68:440–454
    [Google Scholar]
  16. Li S., Orlich M., Rott R. 1990; Generation of seal influenza virus variants pathogenic for chickens, because of hemagglutinin cleavage site changes. Journal of Virology 64:3297–3303
    [Google Scholar]
  17. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Naeve C. W., Webster R. G. 1983; Sequence of the hemagglutinin gene from influenza virus A/seal/Mass/1/80. Virology 129:298–308
    [Google Scholar]
  19. Nagai Y. 1993; Protease-dependent virus tropism and pathogenicity. Trends in Microbiology 1:81–87
    [Google Scholar]
  20. Ogasawara T., Gotoh B., Suzuki H., Asaka K., Shimokata R., Rott R., Nagai Y. 1992; Expression of factor X and its significance for the determination of paramyxovirus tropism in the chicken embryo. EMBO Journal 11:467–472
    [Google Scholar]
  21. Orlich M., Rott R. 1994; Thermolysin activation mutants with changes in the fusogenic region of an influenza virus hemagglutinin. Journal of Virology 68:7537–7539
    [Google Scholar]
  22. Rott R. 1992; The pathogenic determinant of influenza virus. Veterinary Microbiology 33:303–310
    [Google Scholar]
  23. Rott R., Reinacher M., Orlich M., Klenk H.-D. 1980; Cleavability of hemagglutinin determines spread of avian influenza viruses in the chorioallantoic membrane of chicken embryo. Archives of Virology 65:123–133
    [Google Scholar]
  24. Rott R., Orlich M., Klenk H.-D., Wang M. L., Skehel J. J., Wiley D. C. 1984; Studies on the adaptation of influenza viruses to MDCK cells. EMBO Journal 13:3329–3332
    [Google Scholar]
  25. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74:5463–5467
    [Google Scholar]
  26. Schägger H., von Jagow G. 1987; Tricine-sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry 166:368–379
    [Google Scholar]
  27. Scheiblauer H., Reinacher M., Tashiro M., Rott R. 1992; Interactions between bacteria and influenza A virus in the development of influenza pneumonia. Journal of Infectious Diseases 166:783–791
    [Google Scholar]
  28. Scheid A., Choppin P. W. 1976; Protease activation mutants of Sendai virus. Activation of biological properties by specific proteases. Virology 69:265–277
    [Google Scholar]
  29. Stienecke-Gröber A., Vey M., Angliker A., Shaw E., Thomas G., Roberts C., Klenk H.-D., Garten W. 1992; Influenza hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO Journal 11:2407–2414
    [Google Scholar]
  30. Tashiro M., Ciborowski P., Klenk H. D., Pulverer G., Rott R. 1987; Role of staphylococcal protease on the development of influenza pneumonia. Nature 325:536–537
    [Google Scholar]
  31. Tashiro M., Seto J. T., Choosakul S., Hegemann H., Klenk H.-D., Rott R. 1992a; Changes in specific cleavability of Sendai virus fusion protein: implications for pathogenicity in mice. Journal of General Virology 73:1575–1579
    [Google Scholar]
  32. Tashiro M., Yokogoshi Y., Tobita K., Seto J. T., Rott R., Kido H. 1992b; Tryptase Clara, an activating protease for Sendai virus in rat lungs, is involved in pneumopathogenicity. Journal of Virology 66:7211–7216
    [Google Scholar]
  33. Tyrrell D. A. J., Tamm I., Forssman O., Horsfall F. L. 1954; A new count of allantoic cells of the 10-day chick embryo. Proceedings of the Society of Experimental and Biological Medicine 86:594–598
    [Google Scholar]
  34. Vey M., Orlich M., Adler S., Klenk H. D., Rott R., Garten W. 1992; Hemagglutinin activation of pathogenic avian influenza viruses of serotype H7 requires the protease recognition motif R-X-K/R-R. Virology 188:408–113
    [Google Scholar]
  35. Wang X. L., Itoh Μ., Hotta Μ, Homma M. 1994; A protease activation mutant, MVCES1, as a safe and potent live vaccine derived from currently prevailing Sendai virus. Journal of Virology 683369–3373
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-3-625
Loading
/content/journal/jgv/10.1099/0022-1317-76-3-625
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error