1887

Abstract

Human immunodeficiency virus type 1 (HIV-1) establishes persistent infections in humans, in most cases leading to the development of AIDS. HIV-1 infects CD4 lymphocytes, monocytes and dendritic cells in the peripheral blood and lymphoid organs, and microglia in the central nervous system (Gartner , 1986; Koenig , 1986; Pope , 1994). This virus tropism correlates with expression of the cell surface antigen CD4, which has been shown to be the principal receptor interacting with the virus surface glycoprotein, gp 120 (Dalgleish , 1984; Klatzmann , 1984). However, cell surface expression of CD4 alone is not sufficient to confer susceptibility to infection by HIV-1. Recently, several members of the chemokine receptor family of G-protein coupled seven transmembrane spanning proteins were identified as additional coreceptors (Alkhatib , 1996; Choe , 1996; Deng , 1996; Doranz , 1996; Dragic , 1996; Feng , 1996).

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-12-2905
1996-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/12/JV0770122905.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-12-2905&mimeType=html&fmt=ahah

References

  1. Alkhatib G. C., Combadiere C., Broder C. C., Feng Y., Kennedy P. E., Murphy P. M., Berger E. A. 1996; CC-CKR5: a RANTES, MIP-1α, MIP-1β receptor as a fusion cofactor for macrophage tropic HIV-1. Science 272:1955–1958
    [Google Scholar]
  2. Allan J. S., Whitehead E. M., Strout K., Short M., Kanda P., Hart T. K., Bugelski P. J. 1991; Strong association of simian immunodeficiency virus (SIVagm) envelope glycoprotein heterodimers: possible role in receptor-mediated activation. AIDS Research and Human Retroviruses 8:2011–2020
    [Google Scholar]
  3. Andeweg A. C., Leeflang P., Osterhaus A. D., Bosch M. L. 1993; Both the V2 and V3 regions of the human immunodeficiency virus type 1 surface glycoprotein functionally interact with other envelope regions in syncytium formation. Journal of Virology 67:3232–3239
    [Google Scholar]
  4. Ashkenazi A., Smith D. H., Marsters S. A., Riddle L., Gregory T. J., Ho D. D., Capon D. J. 1991; Resistance of primary isolates of human immunodeficiency virus type 1 to soluble CD4 is independent of CD4–rgp120 binding affinity. [Erratum 89, 1517.] Proceedings of the National Academy of Sciences, USA 88:7056–7060
    [Google Scholar]
  5. Asjo B., Morfeldt-Manson L., Albert J., Biberfeld G., Karlsson A., Lidman K., Fenyo E. M. 1986; Replicative properties of human immunodeficiency virus from patients with varying severity of HIV infection. Lancet ii:660–662
    [Google Scholar]
  6. Back N. K. J. T., Smit L., de Jong J., Keulen W., Schutten M., Goudsmit J., Tersmette M. 1994; An N-glycan within the human immunodeficiency virus type 1 gp120 V3 loop affects virus neutralization. Virology 199:431–438
    [Google Scholar]
  7. Blacklow S. C., Lu M., Kim P. S. 1995; A trimeric subdomain of the simian immunodeficiency virus envelope glycoprotein. Biochemistry 34:14955–14962
    [Google Scholar]
  8. Bosch M. L., Andeweg A. C., Schipper R., Kenter M. 1994; Insertion of N-linked glycosylation sites in the variable regions of the human immunodeficiency virus type 1 surface glycoprotein through AAT triplet reiteration. Journal of Virology 68:7566–7569
    [Google Scholar]
  9. Bou-Habib D. C., Roderiquez G., Oravecz T., Berman P. W., Lusso P., Norcross M. A. 1994; Cryptic nature of envelope V3 region epitopes protects primary monocytotropic human immunodeficiency virus type 1 from antibody neutralization. Journal of Virology 68:6006–6013
    [Google Scholar]
  10. Boyd M. T., Simpson G. R., Cann A. J., Johnson M. A., Weiss R. A. 1993; A single amino acid substitution in the VI loop of human immunodeficiency virus type 1 gp120 alters cellular tropism. Journal of Virology 67:3649–3652
    [Google Scholar]
  11. Broder C. C., Earl P. L., Long D., Abedon S. T., Moss B., Dorns R. W. 1994; Antigenic implications of human immunodeficiency virus type 1 envelope quaternary structure: oligomer-specific and -sensitive monoclonal antibodies. Proceedings of the National Academy of Sciences, USA 91:11699–11703
    [Google Scholar]
  12. Burton D. R., Pyati J., Koduri R., Sharp S. J., Thornton G. B., Parren P. W., Sawyer L. S., Hendry R. M., Dunlop N., Nara P. L. Others 1994; Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266:1024–1027
    [Google Scholar]
  13. Cann A. J., Churcher M. J., Boyd M., O’Brien W., Zhao J. Q., Zack J., Chen I. S. 1992; The region of the envelope gene of human immunodeficiency virus type 1 responsible for determination of cell tropism. Journal of Virology 66:305–309
    [Google Scholar]
  14. Cao Y., Ho D. D., Todd J., Kokka R., Urdea M., Lifson J. D., Piatak M. Jr, Chen S., Hahn B. H., Saag S. M. 1995a; Clinical evaluation of branched DNA signal amplification for quantifying HIV type 1 in human plasma. AIDS Research and Human Retroviruses 11:353–361
    [Google Scholar]
  15. Cao Y., Qin L., Zhang L., Safrit J., Ho D. D. 1995b; Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection [see comments]. New England Journal of Medicine 332:201–208
    [Google Scholar]
  16. Cheng-Mayer C., Seto D., Tateno M., Levy J. A. 1988; Biologic features of HIV-1 that correlate with virulence in the host. Science 240:80–82
    [Google Scholar]
  17. Chesebro B., Wehrly K., Nishio J., Perryman S. 1992; Macrophage tropic HIV isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell tropic isolates: definition of critical amino acids involved in cell tropism. Journal of Virology 66:6547–6554
    [Google Scholar]
  18. Choe H., Farzan M., Sun Y., Sullivan N., Rollins B., Ponath P. D., Wu L., MacKay C. R., Larosa G., Newman W., Gerard N., Gerard C., Sodroski J. 1996; The B chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85:1135–1148
    [Google Scholar]
  19. Clements G. J., Price-Jones M. J., Stephens P. E., Sutton C., Shulz T. F., Clapham P. R., McKeating J. A., McClure M. O., Thomson S., Marsh M., Kay J., Weiss R. A., Moore J. P. 1991; The V3 loops of the HIV-1 and HIV-2 surface glycoproteins contain proteolytic cleavage sites: a possible function in viral fusion?. AIDS Research and Human Retroviruses 7:3–15
    [Google Scholar]
  20. Cocchi F., Devico A., Garzino-Demo A., Arya S., Gallo R., Lusso P. 1995; Identification of RANTES, MIP-1α and MIP-1β as the major HIV-suppressive factors produced by CD8+ T-cells. Science 270:1811–1815
    [Google Scholar]
  21. Conley A. J., Kessler J. A. N., Boots L. J., Tung J. S., Arnold B. A., Keller P. M., Shaw A. R., Emini E. A. 1994; Neutralization of divergent human immunodeficiency virus type 1 variants and primary isolates by IAM-41–2F5, an anti-gp41 human monoclonal antibody. Proceedings of the National Academy of Sciences, USA 91:3348–3352
    [Google Scholar]
  22. Connor R. I., Ho D. D. 1994; Human immunodeficiency virus type 1 variants with increased replicative capacity develop during the asymptomatic stage before disease progression. Journal of Virology 68:4400–4408
    [Google Scholar]
  23. Connor R., Mohri H., Cao Y., Ho D. D. 1993; Increased viral burden and cytopathicity correlate temporally with CD4+ T-lymphocyte decline and clinical progression in human immunodeficiency virus type 1-infected individuals. Journal of Virology 67:1772–1777
    [Google Scholar]
  24. Cornelissen M., Mulder Kampinga G., Veenstra J., Zorgdrager F., Kuiken C., Hartman S., Dekker J., Van Der Hoek L., Sol C., Coutinho R. 1995; Syncytium-inducing (SI) phenotype suppression at seroconversion after intramuscular inoculation of a non-syncytium-inducing/SI phenotypically mixed human immunodeficiency virus population. Journal of Virology 69:1810–1818
    [Google Scholar]
  25. Daar E. S., Ho D. D. 1991; Relative resistance of primary HIV-1 isolates to neutralization by soluble CD4. American Journal of Medicine 90:22s–26s
    [Google Scholar]
  26. Dalgleish A. G., Beverly P. C. L., Clapham P. R., Crawford D. H., Greaves M. F., Weiss R. A. 1984; The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312:763–767
    [Google Scholar]
  27. de Jong J. J., De Ronde A., Keulen W., Tersmette M., Goudsmit J. 1992; Minimal requirements for the HIV-1 V3 domain to support the syncytium-inducing phenotype: analysis by single amino acid substitution. Journal of Virology 66:6777–6780
    [Google Scholar]
  28. Delwart E. L., Sheppard H. W., Walker B. D., Goudsmit J., Mullins J. I. 1994; Human immunodeficiency virus type 1 evolution in vivo tracked by DNA heteroduplex mobility assays. Journal of Virology 68:6672–6683
    [Google Scholar]
  29. Deng H., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., Di Marzio P., Marmon S., Sutton R. E., Hill C. M., Davis C. B., Peiper S. C., Schall T. J., Littman D. R., Landau N. R. 1996; Identification of a major coreceptor for primary isolates of HIV-1. Nature 381:661–666
    [Google Scholar]
  30. Donaldson Y. K., Bell J. E., Holmes E. C., Hughes E. S., Brown H. K., Simmonds P. 1994; In vivo distribution and cytopathology of variants of HIV-1 showing restricted sequence variability in the V3 loop. Journal of Virology 68:5991–6005
    [Google Scholar]
  31. Doranz B. J., Rucker R., Yi Y., Smyth R. J., Samson S., Peiper S. C., Parmentier M., Collman R. C., Dorns R. W. 1996; A dual-tropic primary HIV-1 isolate that uses fusin and the B-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85:1149–1158
    [Google Scholar]
  32. Dragic T., Litwin V., Allaway G. P., Martin S. R., Huang Y., Nagashima K. A., Cayanan C., Maddon P. J., Koup R. A., Moore J. P., Paxton W. A. 1996; HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673
    [Google Scholar]
  33. Earl P. L., Moss B. 1993; Mutational analysis of the assembly domain of the HIV-1 envelope glycoprotein. AIDS Research and Human Retroviruses 9:589–594
    [Google Scholar]
  34. Earl P. L., Dorns R. W., Moss B. 1990; Oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein. Proceedings of the National Academy of Sciences, USA 87:648–652
    [Google Scholar]
  35. Earl P. L., Broder C. C., Long D., Lee S. A., Peterson J., Chakrabarti S., Dorns R.W., Moss B. 1994; Native oligomeric human immunodeficiency virus type 1 envelope glycoprotein elicits diverse monoclonal antibody reactivities. Journal of Virology 68:3015–3026
    [Google Scholar]
  36. Embretson J., Zupancic M., Ribas J. L., Burke A., Racz P., Tenner Racz K., Haase A. T. 1993; Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 362:359–362
    [Google Scholar]
  37. Fast P. E., Johnston M. I., Killen J. Y. The AIDS Vaccine Evaluation Group 1995; HIV vaccine clinical trials: experience of the NIAID AIDS vaccine evaluation group. Dixieme Colloque des Cent Gardes283–290
    [Google Scholar]
  38. Feng Y., Broder C. C., Kennedy P. E., Berger E. A. 1996; HIV entry factor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877
    [Google Scholar]
  39. Fenouillet E., Jones I. M. 1995; The glycosylation of human immunodeficiency virus type 1 transmembrane glycoprotein (gp41) is important for the efficient intracellular transport of the envelope precursor gp160. Journal of General Virology 76:1509–1514
    [Google Scholar]
  40. Fenyo E. M., Morfeldt-Manson L., Chiodi F., Lind A., Von Gegerfelt A., Albert J., Olausson E., Asjo B. 1988; Distinct replicative and cytopathic characteristics of human immunodeficiency virus isolates. Journal of Virology 62:4414–4419
    [Google Scholar]
  41. Fenyo E. M., Albert J., McKeating J. A. 1996; The role of the humoral immune response in HIV infection. AIDS 10:S97–S106
    [Google Scholar]
  42. Fouchier R. A., Freed E. O., Martin M. A. 1994; Evidence for a functional interaction between the V1/V2 and C4 domains of human immunodeficiency virus type 1 envelope glycoprotein gp120. Journal of Virology 68:2503–2512
    [Google Scholar]
  43. Fox D. G., Balfe P., Palmer C. P., May J. C., Arnold C., McKeating J. A. 1997; Length polymorphism within the second variable region of the HIV-1 envelope glycoprotein affects accessibility of the receptor binding site. Journal of Virology (in press)
    [Google Scholar]
  44. Freed E. O., Martin M. A. 1994; Evidence for a functional interaction between the V1/V2 and C4 domains of human immunodeficiency virus type 1 envelope glycoprotein gp120. Journal of Virology 68:2503–2512
    [Google Scholar]
  45. Gabriel J. L., Mitchell W. M. 1993; Proposed atomic structure of a truncated human immunodeficiency virus glycoprotein gp120 derived by molecular modeling: target CD4 recognition and docking mechanism. Journal of Virology 90:4186–4190
    [Google Scholar]
  46. Gorny M., Moore J. P., Conley A. J., Karwowska S., Sodroski J., Williams C., Burda S., Boots L. J., Zolla-Pazner S. 1994; Human anti-V2 monoclonal antibody that neutralizes primary but not laboratory isolates of human immunodeficiency virus type 1. Journal of Virology 68:8312–8320
    [Google Scholar]
  47. Gartner S., Markovits P., Markovitz D., Kaplan M., Gallo R., Popovic M. 1986; The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233:215–219
    [Google Scholar]
  48. Groenink M., Fouchier R. A., Broersen S., Baker C. H., Koot M., Van’t Wout A. B., Huisman H. G., Miedema F., Tersmette M., Schuitemaker H. 1993; Relation of phenotype evolution of HIV-1 to envelope V2 configuration. Science 260:1513–1516
    [Google Scholar]
  49. Groenink M., Moore J. P., Broersen S., Schuitemaker H. 1995; Equal levels of gp120 retention and neutralization resistance of phenotypically distinct primary human immunodeficiency virus type 1 variants upon soluble CD4 treatment. Journal of Virology 69:523–527
    [Google Scholar]
  50. Helseth E., Olshevsky U., Furman C., Sodroski J. 1991; Human immunodeficiency virus type 1 gp120 envelope glycoprotein regions important for association with the gp41 transmembrane glycoprotein. Journal of Virology 65:2119–2123
    [Google Scholar]
  51. Ho D. D., Neumann A. U., Perelson A. S. 1995; Rapid turnover of plasmid virions and CD4 lymphocytes in HIV-1 infection. Nature 373:123–126
    [Google Scholar]
  52. Hurtley S. M., Heleneius A. 1989; Protein oligomerization in the endoplasmic reticulum. Annual Review of Cell Biology 5:277–307
    [Google Scholar]
  53. Hwang S. S., Boyle T. J., Lyerly H. K., Cullen B. R. 1991; Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science 253:71–74
    [Google Scholar]
  54. Jeffs S. A., McKeating J. A., Lewis S., Craft H., Biram D., Stephens P. E., Brady R. L. 1996; Antigenicity of truncated forms of the human immunodeficiency virus type 1 envelope glycoprotein. Journal of General Virology 77:1403–1410
    [Google Scholar]
  55. Kabat D., Kozak S. L., Wehrly K., Chesebro B. 1994; Differences in CD4 dependence for infectivity of laboratory-adapted and primary patient isolates of human immunodeficiency virus type 1. Journal of Virology 68:2570–2577
    [Google Scholar]
  56. Karlsson A., Parsmyr K., Sandstrom E., Fenyo E. M., Albert J. 1994; MT-2 cell tropism as a prognostic marker for disease progression in HIV-1 infection. Journal of Clinical Microbiology 32:364–370
    [Google Scholar]
  57. Katinger H. 1994; Human monoclonal antibodies for passive immunotherapy of HIV-1. Antibiotics and Chemotherapy 46:25–37
    [Google Scholar]
  58. Keller R., Peden K., Paulous S., Montagnier L., Cordonnier A. 1993; Amino acid changes in the fourth conserved region of human immunodeficiency virus type 2 strain HIV-2ROD envelope glycoprotein modulate fusion. Journal of Virology 67:6253–6258
    [Google Scholar]
  59. Klatzmann D., Champagne E., Chamaret S., Gruest J., Guetard D., Hercend T., Gluckman J. C., Montagnier L. 1984; T lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312:767–768
    [Google Scholar]
  60. Koenig S., Gendelam H., Orenstein J., Dalcanto M., Pezeshkpour G., Yungbluth M., Janotta F., Aksamit A., Martin M., Fauci A. 1986; Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 233:1089–1092
    [Google Scholar]
  61. Koito A., Harrowe G., Levy J. A., Cheng-Mayer C. 1994; Functional role of the V1V2 region of human immunodeficiency virus type 1 envelope glycoprotein gp!20 in infection of primary macrophages and soluble CD4 neutralization. Journal of Virology 68:2253–2259
    [Google Scholar]
  62. Koito A., Stamatatos L., Cheng-Mayer C. 1995; Small amino acid sequence changes within the V2 domain can affect the function of T-cell line tropic HIV-1 envelope gp120. Virology 206:878–884
    [Google Scholar]
  63. Koot M., Vos A. H. V., Keet R. P. M., De Goede R. E., Dercksen M. W., Terpstra F. G., Coutinho R. A., Miedema F., Tersmette M. 1992; HIV-1 biological phenotype in long term infected individuals, evaluated with an MT-2 co-cultivation assay. AIDS 6:49–54
    [Google Scholar]
  64. Korber B. T., Kunstman K. J., Patterson B. K., Furtado M., McEvilly M. M., Levy R., Wolinsky S. M. 1994a; Genetic differences between blood- and brain-derived viral sequences from human immunodeficiency virus type 1-infected patients: evidence of conserved elements in the V3 region of the envelope protein of brain-derived sequences. Journal of Virology 68:7467–7481
    [Google Scholar]
  65. Korber B. T., Madnnes K., Smith R. F., Myers G. 1994b; Mutational trends in V3 loop protein sequences observed in different genetic lineages of human immunodeficiency virus type 1. Journal of Virology 68:6730–6744
    [Google Scholar]
  66. Kostrikis L. G., Cao Y., Ngai H., Moore J. P., Ho D. D. 1996; Quantitative analysis of serum neutralization of human immunodeficiency virus type 1 from subtypes A, B, C, D, E, F, and I: lack of direct correlation between neutralization serotypes and genetic subtypes and evidence for prevalent serum-dependent infectivity enhancement. Journal of Virology 70:445–458
    [Google Scholar]
  67. Lamers S. L., Sleasman J. W., She J. X., Barrie K. A., Pomeroy S. M., Barrett D. J., Goodenow M. M. 1993; Independent variation and positive selection in env V1 and V2 domains within maternal-infant strains of human immunodeficiency virus type 1 in vivo. Journal of Virology 67:3951–3960
    [Google Scholar]
  68. LaRosa G. J., Davide J. P., Weinhold K., Waterbury J. A., Profy A. T., Lewis J. A., Langlois A. J., Dreesman G. R., Boswell R. N., Shadduck P. Others 1990; Conserved sequence and structural elements in the HIV-1 principal neutralizing determinant: corrections and clarifications [letter]. Science251–811
    [Google Scholar]
  69. Leonard C. K., Spellman M. W., Riddle L., Harris R. J., Thomas J. N., Gregory T. J. 1990; Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. Journal of Biological Chemistry 265:10373–10382
    [Google Scholar]
  70. Li Y., Luo L., Rasool N., Kang C. Y. 1993; Glycosylation is necessary for the correct folding of human immunodeficiency virus gp120 in CD4 binding. Journal of Virology 67:584–588
    [Google Scholar]
  71. Louwagie J., Janssens W., Mascola J., Heyndrickx L., Hegerich P., Van Der Groen G., McCutchan F. E., Burke D. S. 1993; Genetic diversity of the envelope glycoprotein from human immunodeficiency virus type 1 isolates of African origin. Journal of Virology 69:263–271
    [Google Scholar]
  72. Lukashov V. V., Kuiken K., Goudsmit J. 1995; Intrahost human immunodeficiency virus type 1 evolution is related to the length of the immunocompetent period. Journal of Virology 69:6911–6916
    [Google Scholar]
  73. McKeating J. A., McKnight A., Moore J. P. 1991; Differential loss of envelope glycoprotein gp120 from virions of human immunodeficiency virus type 1 isolates: effects on infectivity and neutralization. Journal of Virology 65:852–860
    [Google Scholar]
  74. McKeating J. A., Thali M., Furman C., Karwowska S., Gorny M. K., Cordell J., Zolla-Pazner S., Sodroski J., Weiss R. A. 1992; Amino acid residues of the human immunodeficiency virus type I gp120 critical for the binding of rat and human neutralizing antibodies that block the gp120–sCD4 interaction. Virology 190:134–142
    [Google Scholar]
  75. McKeating J. A., Shotton C., Cordell J., Graham S., Balfe P., Sullivan N., Charles M., Blomstedt A., Olofsson S., Kayman S. C., Wu Z., Pinter A., Dean C., Sodroski J., Weiss R. A. 1993; Characterization of neutralizing monoclonal antibodies to linear and conformation-dependent epitopes within the first and second variable domains of HIV-1 gp120. Journal of Virology 67:4932–4944
    [Google Scholar]
  76. McKeating J. A., Shotton C., Jeffs S., Brady L., Fenyo E. M., Bjorndal A., Balfe P. 1996a; Truncated HIV-1 gp120 envelope glycoprotein elicits a cross-clade neutralizing immune response. Journal of Virology (submitted)
    [Google Scholar]
  77. McKeating J. A., Zhang Y. J., Arnold C., Frederiksson R., Fenyo E. M., Balfe P. 1996b; Chimeric viruses expressing primary envelope glycoproteins of HIV-1 show increased sensitivity to neutralization by human sera. Virology 220:450–460
    [Google Scholar]
  78. McKeating J. A., Shotton C., Jeffs S., Palmer C., Hammond A., Lewis J., Oliver K., May J., Balfe P. 1996c; Immunogenicity of full length and truncated forms of the human immunodeficiency virus type 1 envelope glycoprotein. Immunology Letters 51:101–105
    [Google Scholar]
  79. McKnight A., Weiss R. A., Shotton C., Takeuchi Y., Hoshino H., Clapham P. R. 1995; Change in tropism upon immune escape by human immunodeficiency vims. Journal of Virology 69:3167–3170
    [Google Scholar]
  80. Mackewicz C. E., Blackbourn D. J., Levy J. A. 1995; CD8 + T cells suppress human immunodeficiency vims replication by inhibiting viral transcription. Proceedings of the National Academy of Sciences, USA 92:2308–2312
    [Google Scholar]
  81. Malykh A., Reitz M. S. Jr, Louie A., Hall L., Lori F. 1995; Multiple determinants for growth of human immunodeficiency vims type 1 in monocyte-macrophages. Virology 206:646–650
    [Google Scholar]
  82. Mansky L., Temin H. 1995; Lower in vivo mutation rate of human immunodeficiency vims type 1 than that predicted from the fidelity of purified reverse transcriptase. Journal of Virology 69:5087–5094
    [Google Scholar]
  83. Mascola J. R., Louwagie J., McCutchan F. E., Fischer C. L., Hegerich P. A., Wagner K. F., Fowler A. K., McNeil J. G., Burke D. S. 1994; Two antigenically distinct subtypes of human immunodeficiency virus type 1: viral genotype predicts neutralization serotype. Journal of infectious Diseases 169:48–54
    [Google Scholar]
  84. Mascola J. R., Snyder S. W., Weislow O. S., Belay S. M., Belshe R. B., Schwartz D. H., Clements M. L., Dolin R., Graham B. S., Gorse G. J., Keefer M. C., McElrath M. J., Walker M. C., Wagner K. F., McNeil J. G., McCutchan F. E., Burke D. S. 1996; Immunization with envelope subunit vaccine products elicits neutralizing antibodies against laboratory-adapted but not primary isolates of human immunodeficiency virus type 1. Journal of Infectious Diseases 173:340–348
    [Google Scholar]
  85. Modrow S., Hahn B. H., Shaw G. M., Gallo R. C., Wong-Staal F., Wolf H. 1987; Computer assisted analysis of envelope protein sequences of seven HIV-1 isolates: predictions of antigenic epitopes in conserved and variable regions. Journal of Virology 61:570–580
    [Google Scholar]
  86. Moore J. P., Ho D. D. 1995; HIV-1 neutralization: the consequences of viral adaption to growth on T-cells. AIDS 9:S117–S136
    [Google Scholar]
  87. Moore J. P., McKeating J. A., Weiss R. A., Sattentau Q. J. 1990; Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science 250:1139–1142
    [Google Scholar]
  88. Moore J., McKeating J. A., Huang Y. X., Ashkenazi A., Ho D. D. 1992; Virions of primary human immunodeficiency virus type 1 isolates resistant to soluble CD4 (sCD4) neutralization differ in sCD4 binding and glycoprotein gp120 retention from sCD4-sensitive isolates. Journal of Virology 66:235–243
    [Google Scholar]
  89. Moore J. P., Sattentau Q. J., Yoshiyama H., Thali M., Charles M., Sullivan N., Poon S. W., Fung M. S., Traincard F., Pinkus M. Others 1993a; Probing the structure of the V2 domain of human immunodeficiency virus type 1 surface glycoprotein gp120 with a panel of eight monoclonal antibodies: human immune response to the V1 and V2 domains. Journal of Virology 67:6136–6151
    [Google Scholar]
  90. Moore J. P., Thali M., Jameson B. A., Vignaux F., Lewis G. K., Poon S. W., Charles M., Fung M. S., Sun B., Durda P. J., Akerblom L., Wahren B., Ho D. D., Sattentau Q. J., Sodroski J. 1993b; Immunochemical analysis of the gp120 surface glycoprotein of HIV-1: probing the structure of the C4 and V4 domain and interaction of the C4 domain with the V3 loop. Journal of Virology 67:4785–4796
    [Google Scholar]
  91. Moore J. P., Jameson B. A., Weiss R. A., Sattentau Q. J. 1993c; HFV-cell fusion. In Viral Fusion Mechanism pp 233–289 Edited by Bentz J. Boca Raton, Fla.: CRC Press;
    [Google Scholar]
  92. Moore J. P., Cao Y., Qing L., Sattentau Q. J., Pyati J., Koduri R., Robinson J., Barbas C. F. R., Burton D. R., Ho D. D. 1995; Primary isolates of human immunodeficiency virus type 1 are relatively resistant to neutralization by monoclonal antibodies to gp120, and their neutralization is not predicted by studies with monomeric gp120. Journal of Virology 69:101–109
    [Google Scholar]
  93. Murphy A. L., Lewis J., Albert J., Balfe P., McKeating J. A. 1996; Antigenic variation within the CD4 receptor binding site of primary human immunodeficiency virus type 1 gp120 proteins. Journal of Virology (submitted)
    [Google Scholar]
  94. Muster T., Steindl F., Purtscher M., Trkola A., Klima A., Himmler G., Ruker F., Katinger H. 1993; A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. Journal of Virology 67:6642–6647
    [Google Scholar]
  95. Myers G. 1994; HIV: between past and future. AIDS Research and Human Retroviruses 10:1317–1324
    [Google Scholar]
  96. Nowak M. A., May R. M. 1993; AIDS pathogenesis: mathematical models of HIV and SIV infections. AIDS 7:S3–S18
    [Google Scholar]
  97. Nowak M., Anderson R. M., McLean A. R., Wolfs T. F., Goudsmit J., May R. M. 1991; Antigenic diversity thresholds and the development of AIDS. Science 254:963–969
    [Google Scholar]
  98. Nyambi P. N., Nkengasong J., Peeters M., Simon F., Eberle J., Janssens W., Fransen K., Willems B., Vereecken K., Heyndrickx L. Others 1995; Reduced capacity of antibodies from patients infected with human immunodeficiency virus type 1 (HIV-1) group O to neutralize primary isolates of HIV-1 group M viruses. Journal of Infectious Diseases 172:1228–1237
    [Google Scholar]
  99. Olshevsky U., Helseth E., Furman C., Li J., Haseltine W., Sodroski J. 1990; Identification of individual human immunodeficiency virus type 1 gp120 amino acids important for CD4 receptor binding. Journal of Virology 64:5701–5707
    [Google Scholar]
  100. Owens R. J., Compans R. W. 1990; The human immunodeficiency virus type 1 envelope glycoprotein acquires aberrant intermolecular disulfide bonds that may prevent normal proteolytic processing. Virology 179:827–833
    [Google Scholar]
  101. Palmer C., Balfe P., Fox D., May J. C., Frederiksson R., Fenyo E. M., McKeating J. A. 1996; Functional characterization of the V1V2 region of HIV-1. Virology 220:436–449
    [Google Scholar]
  102. Pantaleo G., Graziosi C., Demarest J. F., Butini L., Montroni M., Fox C. H., Orenstein J. M., Kotler D. P., Fauci A. S. 1993; HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362:355–358
    [Google Scholar]
  103. Paxton W. A., Martin S., Tse D., O’Brien T., Scumick J., Van Devanter N., Padian N., Braun J., Kotler D., Wolinski S., Koup R. 1993; Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high risk sexual exposures. Nature Medicine 2:412–417
    [Google Scholar]
  104. Pollard S. R., Rosa M. D., Rosa J. J., Wiley D. C. 1992; Truncated variants of gp120 bind CD4 with high affinity and suggest a minimum CD4 binding region. EMBO Journal 11:585–591
    [Google Scholar]
  105. Pope M., Betjes M., Romani N., Hirmand H., Cameron P., Hoffman L., Gazelter S., Schuler G., Steinman R. 1994; Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell 78:389–398
    [Google Scholar]
  106. Rao Z., Belyaev A. S., Fry E., Roy P., Jones I. M., Stuart D. I. 1995; Crystal structure of SIV matrix antigen and implications for virus. Nature 378:743–747
    [Google Scholar]
  107. Richardson T. M. Jr, Stryjewski B. L., Broder C. C., Hoxie J. A., Mascola J. R., Earl P. L., Dorns R. W. 1996; Humoral response to oligomeric human immunodeficiency virus type 1 envelope protein. Journal of Virology 70:753–762
    [Google Scholar]
  108. Sabino E., Pan L. Z., Cheng-Mayer C., Mayer A. 1994; Comparison of in vivo plasma and peripheral blood mononuclear cell HIV-1 quasi-species to short-term tissue culture isolates: an analysis of tat and C2-V3 env regions. AIDS 8:901–909
    [Google Scholar]
  109. Sattentau Q. J., Moore J. P. 1991; Conformational changes induced in the human immunodeficiency virus envelope glycoproteins by soluble CD4 binding. Journal of Experimental Medicine 174:407–415
    [Google Scholar]
  110. Sattentau Q. J., Dalgleish A. G., Weiss R. A., Beverley P. C. 1986; Epitopes of the CD4 antigen and HIV infection. Science 234:1120–1123
    [Google Scholar]
  111. Sattentau Q. J., Moore J. P., Vignaux F., Traincard F., Poignard P. 1993; Conformational changes induced in the envelope glycoproteins of the human and simian immunodeficiency viruses by soluble receptor binding. Journal of Virology 67:7383–7893
    [Google Scholar]
  112. Scarlatti G., Leitner T., Hodara V., Halapi E., Rossi P., Albert J., Fenyo E. M. 1993; Neutralizing antibodies and viral characteristics in mother-to-child transmission of HIV-1. AIDS 7:S45–S48
    [Google Scholar]
  113. Schuitemaker H., Koot M., Koostra N. A., Dercksen M. W., de Goede R. E., Van Steenwijk R. P., Lange J. M., Schattenkerk J. K., Miedema F., Tersmette M. 1992; Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population. Journal of Virology 66:1354–1360
    [Google Scholar]
  114. Schulz T. F., Jameson B. A., Lopalco L., Siccardi A. G., Weiss R. A., Moore J. P. 1992; Conserved structural features in the interaction between retroviral surface and transmembrane glycoproteins?. AIDS Research and Human Retroviruses 8:1571–1580
    [Google Scholar]
  115. Shaw G. M. 1995; Viral and cellular dynamics in HIV-1 infection. Dixieme Colloque des Cent Gardes9–11
    [Google Scholar]
  116. Shioda T., Oka S., Ida S., Nokihara K., Toriyoshi H., Mori S., Takebe Y., Kimura S., Shimada K., Nagai Y. Others 1994; Anaturally occurring single basic amino acid substitution in the V3 region of the human immunodeficiency virus type 1 env protein alters the cellular host range and antigenic structure of the virus. Journal of Virology 68:7689–7696
    [Google Scholar]
  117. Shotton C., Arnold C., Sattentau Q., Sodroski J., McKeating J. A. 1995; Identification and characterization of monoclonal antibodies specific for polymorphic antigenic determinants within the V2 region of the human immunodeficiency virus type 1 envelope glycoprotein. Journal of Virology 69:222–230
    [Google Scholar]
  118. Simmonds P., Zhang L. Q., McOmish F., Balfe P., Ludlam C. A., Brown A. J. 1990; Discontinuous sequence change of human immunodeficiency virus (HIV) type 1 env sequences in plasma viral and lymphocyte-associated proviral populations in vivo: implications for models of HIV pathogenesis. Journal of Virology 65:6266–6276
    [Google Scholar]
  119. Soto-Ramierez L. E., Renjifo B., McLane M. F., Lee T. H., Essex M. 1995; Differential growth of HIV-1 sub-types in Langerhans’cells: implications for vaccine development. Dixieme Colloque des Cent Gardes127–130
    [Google Scholar]
  120. Spira A. I., Ho D. D. 1995; Effect of different donor cells on human immunodeficiency virus type 1 replication and selection in vitro. Journal of Virology 69:422–429
    [Google Scholar]
  121. Spira A., Marx P. A., Patterson B. K., Mahoney J., Koup R. A., Wolinsky S. M., Ho D. D. 1996; Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. Journal of Experimental Medicine 183:215–225
    [Google Scholar]
  122. Stamatatos L., Cheng Mayer C. 1995; Structural modulations of the envelope gp120 glycoprotein of human immunodeficiency virus type 1 upon oligomerization and differential V3 loop epitope exposure of isolates displaying distinct tropism upon virion-soluble receptor binding. Journal of Virology 69:6191–6198
    [Google Scholar]
  123. Sullivan N., Thali M., Furman C., Ho D. D., Sodroski J. 1993; Effect of amino acid changes in the V1/V2 region of the human immunodeficiency virus type 1 gp120 glycoprotein on subunit association, syncytium formation, and recognition by a neutralizing antibody. Journal of Virology 67:3674–3679
    [Google Scholar]
  124. Sullivan N., Sun Y., Li J., Hofmann W., Sodroski J. 1995; Replicative function and neutralization sensitivity of envelope glycoproteins from primary and T-cell line-passaged human immunodeficiency virus type 1 isolates. Journal of Virology 69:4413–4122
    [Google Scholar]
  125. Tersmette M., Gruters R. A., De Wolf F., De Goede R. E., Lange J. M., Schellekens P. T., Goudsmit J., Huisman H. G., Miedema F. F. 1989a; Evidence for a role of virulent human immunodeficiency virus variants in the pathogenesis of acquired immunodeficiency syndrome: studies on sequential HIV isolates. Journal of Virology 63:2118–2125
    [Google Scholar]
  126. Tersmette M., Lange J. M., De Goede R. E., De Wolf F., Eftink-Schattenkerk J. K., Schellekens P. T., Coutinho R. A., Huisman H. G., Goudsmit J., Miedema F. F. 1989b; Association between biological properties of human immunodeficiency virus variants and risk for AIDS and AIDS mortality. Lancet i:983–985
    [Google Scholar]
  127. Trkola A., Pomales A. B., Yuan H., Korber B., Maddon P. J., Allaway G. P., Katinger H., Barbas C. F. R., Burton D. R., Ho D. D. 1995; Cross-clade neutralization of primary isolates of human immunodeficiency virus type 1 by human monoclonal antibodies and tetrameric CD4-IgG. Journal of Virology 69:6609–6617
    [Google Scholar]
  128. Turner S., Tizard R., Demarinis J., Pepinsky R. B., Zullo J., Schooley R., Fisher R. 1992; Resistance of primary isolates of human immunodeficiency virus type 1 to neutralization by soluble CD4 is not due to lower affinity with the viral envelope glycoprotein gp120. Proceedings of the National Academy of Sciences, USA 89:1335–1339
    [Google Scholar]
  129. Wain-Hobson S. 1989; HIV genome variability in vivo. AIDS 3: Suppl 1S13–S18
    [Google Scholar]
  130. Wain-Hobson S., Szathmary E., Szamado S., Meyerhans A. 1995; An antigenic demise of the immune system, or AIDS. Dixieme Colloque Des Cent Gardes17–24
    [Google Scholar]
  131. Wang N., Zhu T., Ho D. D. 1995; Sequence diversity of VI and V2 domains of gp120 from human immunodeficiency virus type 1: lack of correlation with viral phenotype. Journal of Virology 69:2708–2715
    [Google Scholar]
  132. Wang W. K., Essex M., Lee T. H. 1996; Single amino acid substitution in constant regions one or four of gp120 causes the phenotype of a HIV-I variant with mutations in hypervariable regions I and II to revert. Journal of Virology 70:607–611
    [Google Scholar]
  133. Warrier S., Pinter A., Honnen W. J., Girard M., Muchmore E., Tilley S. 1994; A novel glycan-dependent epitope in the V2 domain of human immunodeficiency virus type 1 gp 120 is recognized by a highly potent neutralizing chimpanzee monoclonal antibody. Journal of Virology 68:4636–4642
    [Google Scholar]
  134. Wei X., Ghosh S. K., Taylor M. E., Johnson J. A., Emini E. A., Deitsch P., Lifson J. D., Bonhoeffer S., Nowak M. A., Hahn B. H. 1995; Viral dynamics of HIV-1 infection. Nature 373:117–122
    [Google Scholar]
  135. Wenisch E., Jungbauer A., Tauer C., Reiter M., Gruber G., Steindl F., Katinger H. 1989; Isolation of human monoclonal antibody isoproteins by preparative isoelectric focusing in immobilized pH gradients. Journal of Biochemical and Biophysical Methods 18:309–322
    [Google Scholar]
  136. Westervelt P., Henkel T., Trowbridge D. B., Orenstein J., Heuser J., Gendelman H. E., Ratner L. 1992; Dual regulation of silent and productive infection in monocytes by distinct human immunodeficiency virus type 1 determinants. Journal of Virology 66:3925–3931
    [Google Scholar]
  137. Willey R. L., Martin M. A. 1993; Association of HIV-1 envelope glycoprotein with particles depends upon interactions between the third variable and conserved regions of gp120. Journal of Virology 67:3639–3643
    [Google Scholar]
  138. Wolinsky S. M., Korber B. T. M., Neumann A. U., Daniels M., Kunstman K. J., Whetsell A. J., Furtado M. R., Cao Y. Z., Ho D. D., Safrit J. T., Koup R. A. 1996; Adaptive evolution of HIV-1 during natural course of infection. Science 272:537–542
    [Google Scholar]
  139. Wrin T., Loh T. P., Vennari J. G., Schuitemaker H., Nunberg J. H. 1995; Adaptation to persistent growth in the H9 cell line renders a primary isolate of human immunodeficiency virus type 1 sensitive to neutralization by vaccine sera. Journal of Virology 69:39–48
    [Google Scholar]
  140. Wu Z., Kayman S. G., Honnen W., Revesz K., Chen H., Vijh Warrier S., Tilley S. A., McKeating J., Shotton C., Pinter A. 1995; Characterization of neutralization epitopes in the V2 region of human immunodeficiency virus type 1 gp120: role of glycosylation in the correct folding of the V1/V2 domain. Journal of Virology 69:2271–2278
    [Google Scholar]
  141. Wyatt R., Thali M., Tilley S., Pinter A., Posner M., Ho D., Robinson J., Sodroski J. 1992; Relationship of the human immunodeficiency virus type 1 gp120 third variable loop to a component of the CD4 binding site in the fourth conserved region. Journal of Virology 66:6997–7004
    [Google Scholar]
  142. Wyatt R., Sullivan N., Thali M., Repke H., Ho D., Robinson J., Posner M., Sodroski J. 1993; Functional and immunologic characterization of human immunodeficiency virus type 1 envelope glycoproteins containing deletions of the major variable regions. foumal of Virology 67:4557–4565
    [Google Scholar]
  143. Wyatt R., Moore J., Accola M., Desjardin E., Robinson J., Sodroski J. 1995; Involvement of the V1/V2 variable loop structure in the exposure of human immunodeficiency virus type 1 gp120 epitopes induced by receptor binding. foumal of Virology 69:5723–5733
    [Google Scholar]
  144. Zhang L. Q., MacKenzie P., Cleland A., Holmes E. C., Brown A. J., Simmonds P. 1993; Selection for specific sequences in the external envelope protein of human immunodeficiency virus type 1 upon primary infection. Journal of Virology 67:3345–3356
    [Google Scholar]
  145. Zhu T., Mo H., Wang N., Nam D. S., Cao Y., Koup R. A., Ho D. D. 1993; Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science 261:1179–1181
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-12-2905
Loading
/content/journal/jgv/10.1099/0022-1317-77-12-2905
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error