1887

Abstract

The lack of an effective animal model has been a major obstacle in attempts to define the role of humoral and cellular immune responses in protection against flavivirus infection. We have used F hybrid mice (BALB/c × C3H/RV) that are heterozygous for the flavivirus resistance allele Flv and show reduced virus replication in the brain after intracerebral inoculation. F hybrid mice challenged by intracerebral inoculation with Murray Valley encephalitis (MVE) virus developed encephalitis 2–3 days later than a genetically susceptible strain (BALB/c) but showed a similar mortality rate. This delay in the onset of disease provided more opportunity for virus clearance by primed immune responses. Using F hybrid mice we were able to demonstrate protective immunity induced by structural and non-structural proteins of MVE virus by immunization with pure NS1 protein or recombinant vaccinia viruses that expressed various regions of the MVE genome. These constructs included VV-STR (C-prM-E-NS1-NS2A), VV-ΔC (prM-E-NS1-NS2A) and VV-NS1 (NS1-NS2A). VV-ΔC vaccinated mice were completely protected (100% survival) from challenge with 1000 infectious units of MVE virus, while mice inoculated with VV-STR, VV-NS1 or pure NS1 were partially protected (40%, 47% and 85% respectively). Analysis of prechallenge sera and depletion studies revealed that the solid protection induced by VV-ΔC was mediated by neutralizing antibody to the E protein and did not require a CD8 T cell response. The partial protection provided by VV-STR, VV-NS1 and pure NS1 occurred after induction of antibody to NS1. However, depletion of CD8 cells prior to virus challenge ablated the protection provided by VV-NS1 indicating some requirement for class I restricted cytotoxic T cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-6-1287
1996-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/6/JV0770061287.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-6-1287&mimeType=html&fmt=ahah

References

  1. Boyle D. B. 1979; Comparative studies of two related Australian flaviviruses, Murray Valley encephalitis and Kunjin. PhD thesis, Australian National University; Canberra, Australia:
    [Google Scholar]
  2. Chambers T. J., Hahn C. S., Galler R., Rice C. M. 1990; Flavivirus genome organisation, expression, and replication. Annual Review of Microbiology 44:649–688
    [Google Scholar]
  3. Cobbold S. P., Jayasuriya A., Nash A., Prospero T. D., Waldmann H. 1984; Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature 312:548–551
    [Google Scholar]
  4. Dalgarno L., Trent D. W., Strauss J. H., Rice C. M. 1986; Partial nucleotide sequence of the Murray Valley encephalitis virus genome. Comparison of the encoded polypeptides with yellow fever virus structural and non-structural proteins. Journal of Molecular Biology 187:309–323
    [Google Scholar]
  5. Esposito J., Brechling K., Baer G., Moss B. 1987; Vaccinia virus recombinants expressing rabiesvirus glycoprotein protect against rabies. Virus Genes 1:7–21
    [Google Scholar]
  6. Gould E. A., Buckley A., Barrett A. D. T., Cammack N. 1986; Neutralizing (54K) and non-neutralizing (54K and 48K) monoclonal antibodies against structural and non-structural yellow fever virus proteins confer immunity in mice. Journal of General Virology 67:591–595
    [Google Scholar]
  7. Grossberg S. E., Scherer W. F. 1966; The effect of age, virus dose and route of inoculation on unapparent infection in mice with Japanese encephalitis virus. Procedures of the Society of Experimental Biology and Medicine 123:118–124
    [Google Scholar]
  8. Hall R. A., Burgess G. W., Kay B. H. 1988; Type-specific monoclonal antibodies produced to proteins of Murray Valley encephalitis virus. Immunology and Cell Biology 66:51–56
    [Google Scholar]
  9. Hall R. A., Kay B. H., Burgess G. W., Clancy P., Fanning I. D. 1990; Epitope analysis of the envelope and non-structural glycoproteins of Murray Valley encephalitis virus. Journal of General Virology 71:2923–2930
    [Google Scholar]
  10. Hall R. A., Coelen R. J., Mackenzie J. S. 1991; Immunoaffinity purification of the NS1 protein of Murray Valley encephalitis virus: selection of the appropriate ligand and optimal conditions for elution. Journal of Virological Methods 32:11–20
    [Google Scholar]
  11. Hawkes R. A., Roehrig J. T., Hunt A. R., Moore G. A. 1988; Antigenic structure of the Murray Valley encephalitis virus E glycoprotein. Journal of General Virology 69:1105–1109
    [Google Scholar]
  12. Jacobs S. C., Stephenson J. R., Wilkinson G. W. G. 1994; Protection elicited by a replication-defective adenovirus vector expressing the tick-borne encephalitis virus non-structural glycoprotein NS1. Journal of General Virology 75:2399–2402
    [Google Scholar]
  13. Kimura-Kuroda J., Yasui K. 1988; Protection of mice against Japanese encephalitis virus by passive administration with monoclonal antibodies. Journal of Immunology 141:3606–3610
    [Google Scholar]
  14. Konishi E., Pincus S., Paoletti E., Shope R. E., Burrage T., Mason P. W. 1992; Mice immunized with a subviral particle containing the Japanese encephalitis virus prM/M and E proteins are protected from lethal JEV infection. Virology 188:714–720
    [Google Scholar]
  15. Kurane L., Meager A., Ennis F. A. 1989; Dengue virus-specific human T cell clones. Serotype crossreactive proliferation, interferon gamma production, and cytotoxic activity. Journal of Experimental Medicine 170:763–775
    [Google Scholar]
  16. Kurane I., Brinton M. A., Samson A. L., Ennis F. A. 1991; Dengue virus-specific, human CD4+ CDS cytotoxic T cell clones: multiple patterns of virus cross-reactivity recognized by NS3-specific T-cell clones. Journal of Virology 65:1825–1828
    [Google Scholar]
  17. Levine B., Hardwick J. M., Trapp B. D., Crawford T. O., Bollinger R. C., Griffin D. E. 1991; Antibody-mediated clearance of alphavirus infection from neurones. Science 254:856–860
    [Google Scholar]
  18. Lewicki H. A., Von Herrath M. G., Evans C. F., Whitton J. L., Oldstone M. B. A. 1995; CTL escape viral mutants. Virology 211:443–450
    [Google Scholar]
  19. Lobigs M. 1993; Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3. Proceedings of the National Academy of Sciences, USA 90:6218–6222
    [Google Scholar]
  20. Lobigs M., Arthur C. E., Muellbacher A., Blanden R. V. 1994; The flavivirus nonstructural protein NS3 is a dominant source of cytotoxic T cell peptide determinants. Virology 202:195–201
    [Google Scholar]
  21. Mackett M., Smith G. L., Moss B. 1984; General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. Journal of Virology 49:857–864
    [Google Scholar]
  22. Mason P. W., Pincus S., Fournier M. J., Mason T. L., Shope R. E., Paoletti E. 1991; Japanese encephalitis virus-vaccinia recombinants produce particulate forms of the structural membrane proteins and induce high levels of protection against lethal JEV infection. Virology 180:294–305
    [Google Scholar]
  23. Monath T. P. 1986; Pathobiology of the flaviviruses. In The Togaviridae and Flaviviridae pp. 375–440 Edited by Schlesinger S., Schlesinger M. New York: Plenum Press;
    [Google Scholar]
  24. Parrish C. R., Coia G., Hill A., Muellbacher A., Westaway E. G., Blanden R. V. 1991; Preliminary analysis of murine cytotoxic T cell responses to the proteins of the flavivirus Kunjin using vaccinia virus expression. Journal of General Virology 72:1645–1653
    [Google Scholar]
  25. Rothman A. L., Kurane L., Lai C.-J., Bray M., Falgout B., Men R., Ennis F. A. 1993; Dengue virus protein recognition by virusspecific murine CD8+ cytotoxic T lymphocytes. Journal of Virology 67:801–806
    [Google Scholar]
  26. Sangster M. Y., Urosevic N., Mansfield J. P., Mackenzie J. S., Shellam G. R. 1994; Mapping the Flv locus controlling resistance to flaviviruses on mouse chromosome 5. Journal of Virology 68:448–452
    [Google Scholar]
  27. Schlesinger J. J., Brandriss M. W., Putnak J. R., Walsh E. E. 1990; Cell surface expression of yellow fever virus non-structural glycoprotein NS1: consequences of interaction with antibody. Journal of General Virology 71:593–599
    [Google Scholar]
  28. Schlesinger J. J., Foltzer M., Chapman S. 1993; The Fc portion of antibody to yellow fever virus NS1 is a determinant of protection against YF encephalitis in mice. Virology 192:132–141
    [Google Scholar]
  29. Wray W., Boulikas T., Wray V. P., Hancock R. 1981; Silver staining of proteins in polyacrylamide gels. Analytical Biochemistry 118:197–203
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-6-1287
Loading
/content/journal/jgv/10.1099/0022-1317-77-6-1287
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error