1887

Abstract

The development of transmissible spongiform encephalopathies in experimental models depends on two major factors: the intracerebral accumulation of an abnormal, protease-resistant isoform of PrP (PrP), which is a host protein mainly expressed in neurons; and the existence of different strains of agent. In order to make a distinction between pathogenic mechanisms depending upon the accumulation of host-derived PrP and the strain-specific effects, we quantified and compared the sequence of molecular [PrP and glial fibrillary acidic protein (GFAP) accumulation] and pathological events in the brains of syngeneic mice throughout the course of infection with two different strains of agent. The bovine spongiform encephalopathy (BSE) agent exhibits properties different from any known scrapie source and has been studied in comparison with a classical scrapie strain. Convergent kinetic data in both models confirmed the cause-effect relationship between PrP and pathological changes and showed that PrP accumulation is directly responsible for astrocyte activation . Moreover, we observed a threshold level of PrP for this effect on astroglial cells. However, despite similar infectivity titres, the BSE model produced less PrP than scrapie, and the relative importance of gliosis was higher. The comparison of the molecular and pathological features after intracerebral or intraperitoneal inoculation also revealed differences between the models. Therefore, the mechanisms leading to the targeting and the fine regulation of the molecular events seem to be independent of the host PrP and to depend upon the agent. The possible involvement of a regulatory molecule accounting for these specificities has to be considered.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-7-1601
1996-07-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/7/JV0770071601.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-7-1601&mimeType=html&fmt=ahah

References

  1. Bessen R. A., Kocisko D. A., Raymond G. J., Nandan S., Lansbury P. T., Caughey B. 1995; Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature 375:698–700
    [Google Scholar]
  2. Bolton D. C., Mckinley M. P., Prusiner S. B. 1982; Identification of a protein that purifies with the scrapie prion. Science 218:1309–I311
    [Google Scholar]
  3. Bolton D. C., Rudelli R. D., Currie J. R., Bendheim P. E. 1991; Copurification of Sp33–37 and scrapie agent from hamster brain prior to detectable histopathology and clinical disease. Journal of General Virology 72:2905–2913
    [Google Scholar]
  4. Brandner S., Isenmann S., Raeber A., Fischer M., Sailer A., Kobayashi Y., Marino S., Weissmann C., Aguzzi A. 1996; Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379:339–343
    [Google Scholar]
  5. Brown D. R., Herms J., Kretschmar H. A. 1994; Mouse cortical cells lacking cellular PrP survive in cultures with a neurotoxic PrP fragment. Molecular Neuropharmacology 5:2057–2060
    [Google Scholar]
  6. Bruce S. E., Fraser H. 1991; Scrapie strain variation and its implication. In Transmissible Spongiform Encephalopathies pp 125–138 Edited by Chesebro B. W. Springer-Verlag;
    [Google Scholar]
  7. Bruce M., Chree A., McConnell I., Foster J., Pearson G., Fraser H. 1994; Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and the species barrier. Philosophical Transactions of the Royal Society of London 343:405–411
    [Google Scholar]
  8. Bruce M. E., McBride P. A., Farquhar C. F. 1989; Precise targeting of the pathology of the sialoglyoprotein, PrP, and vacuolar degeneration in mouse scrapie. Neuroscience Letters 102:1–6
    [Google Scholar]
  9. Bruce M. E., McConnell I., Fraser H., Dickinson A. G. 1991; The disease characteristics of different strains of scrapie in Sine congenic mouse lines: implications for the nature of the agent and host control of pathogenesis. Journal of General Virology 72:595–603
    [Google Scholar]
  10. Carlson G. A., Goodman P. A., Lovett M., Taylor B. A., Marshall S. T., Torchia M. P., Westaway D., Prusiner S. B. 1988; Genetics and polymorphism of the mouse prion gene complex: the control of scrapie incubation time. Molecular and Cellular Biology 8:5528–5540
    [Google Scholar]
  11. Chesebro B., Race R., Wehrly K., Nishio J., Bloom M., Lechner D., Bergstrom S., Robbins K., Mayer L., Keith J. M., Garon C., Haase A. 1985; Identification of scrapie prion protein-specific mRNA in scrapie infected and uninfected brain. Nature 315:331–333
    [Google Scholar]
  12. Creutzfeldt H. G. 1920; Uber eine eigenartige herdformige erkran-kung des zentralnervensystems. Zeitschrift fuer die gesamte Neurologieund Psychiatric 57:1–18
    [Google Scholar]
  13. Cuillé J., Chelle P. L. 1936; La maladie dite tremblante du mouton est-elle inoculable?. Compte Rendu de I’Academie des Sciences 203:1552–1554
    [Google Scholar]
  14. DeArmond S. J., Prusiner S. B. 1995; Prion protein transgenes and the neuropathology in prion disease. Brain Pathology 5:77–89
    [Google Scholar]
  15. DeArmond S. J., Gonzales M., Mobley W. C., Kon A. A., Stern A., Prusiner H., Prusiner S. B. 1989; PrPSc in scrapie-infected hamster brain is spatially and temporally related to histopathology and infectivity titer. Progress in Clinical and Biological Research 317:601–618
    [Google Scholar]
  16. DeArmond S. J., Prusiner S. B. 1993; The neurochemistry of prion diseases. Journal of Neurochemistry 61:1589–1601
    [Google Scholar]
  17. Dickinson A. G., Outram G. W., Taylor D. M., Foster J. D. 1989; Further evidence that scrapie agent has an independant genome. In Unconventional virus diseases of the central nervous system Paris 2–6 December 1986 pp 446–459 Edited by Court L. A., Dormont D., Brown P., Kingsbury D. T. Fontenay-aux Roses, France: CEA Diffusion;
    [Google Scholar]
  18. Diedrich J. F., Minnigan H., Carp R. I., Whitaker J. N., Race R., Frey W., Haase A. T. 1991; Neuropathological changes in scrapie and Alzheimer’s disease are associated with increased expression of apolipoprotein E and cathepsin D in astrocytes. Journal of Virology 65:4759–4768
    [Google Scholar]
  19. Doi S., Ito M., Shinagawa M., Sato G., Isomura M., Goto H. 1988; Western blot detection of scrapie-associated fibril protein in tissues outside the central nervous system from preclinical scrapie-infected mice. Journal of General Virology 69:955–960
    [Google Scholar]
  20. Dormont D., Delpech B., Delpech A., Courel M. N., Viret J., Markovits P., Court L. 1981; Hyperproduction de proteine gliofibrillaire acide (GFAP) au cours de l′evolution de la tremblante experimentale de la souris. Compte Rendu de I’Academie des Science 293:53–56
    [Google Scholar]
  21. Dormont D., Herodin F., Laupretre N. D., Deslys J. P., Maurel C., Vaslin B., Chaffanet M., Court L. 1989; Biochemical and immunological events during unconventional viruses infections: 1. GFAP, IgG, IgM, complement evolutive patterns. 2. Effects of modifications of reticuloendothelial system on scrapie incubation period. In Unconventional virus diseases of the central nervous system Paris 2-6 December 1986 pp 271–287 Edited by Court L. A., Dormont D., Brown P., Kingsbury D. T. Fontenay-aux Roses, France: CEA Diffusion;
    [Google Scholar]
  22. Eng L. F., Yu A. C. H., Lee Y. L. 1992; Astrocytic response to injury. Progress in Brain Research 94:353–365
    [Google Scholar]
  23. Farquhar C. F., Dornan J., Somerville R. A., Tunstall A. M., Jope J. 1994; Effect of Sine genotype, agent isolate and route of infection on the accumulation of protease-resistant PrP in non-central nervous system tissues during the development of murine scrapie. Journal of General Virology 75:495–504
    [Google Scholar]
  24. Forloni G., Angeretti N., Chiesa R., Monzani E., Salmona M., Bugiani O., Tagliavini F. 1993; Neurotoxicity of a prion protein fragment. Nature 362:543–546
    [Google Scholar]
  25. Forloni G., Bo R. D., Angeretti N., Chiesa R., Smiroldo S., Doni R., Ghibaudi E., Salmona M., Porro M., Verga L., Giaccone G., Bugiani O., Tagliavini F. 1994; A neurotoxic prion protein fragment induces rat astroglial proliferation and hypertrophy. European Journal of Neuroscience 6:1415–1422
    [Google Scholar]
  26. Fraser H. 1976; The pathology of natural and experimental scrapie. In Slow Virus Diseases of Animals and Man pp 267–305 Edited by Kimberlin R. H. New York: North-Holland;
    [Google Scholar]
  27. Fraser H. 1993; Diversity in the neuropathology of scrapie-like diseases in animals. British Medical Bulletin 49:792–809
    [Google Scholar]
  28. Fraser H., Bruce M. E., Chree A., McConnell I., Wells G. A. H. 1992; Transmission of bovine spongiform encephalopathy and scrapie to mice. Journal of General Virology 73:1891–1897
    [Google Scholar]
  29. Jakob A. 1921; Uber eine eigenartige Erkrankung des Zentral-nervensystems mit bemerkenswertem anatomischem Befunde (spastische pseudosklerotische Encephalomyelopathie mit disseminierten Degen-erationsherden). Deutsche Zeitschrift fiir Nervenheilkunde 70:132–146
    [Google Scholar]
  30. Jendroska K., Heinzel F. P., Torchia M., Stowring L., Kretzscmar H. A., Kon A., Stern A., Prusiner S. B., DeArmond S. J. 1991; Proteinase-resistant prion protein accumulation in Syrian hamster brain correlates with regional pathology and scrapie infectivity. Neurology 41:1482–1490
    [Google Scholar]
  31. Kascsak R. J., Rubenstein R., Merz P. A., Carp R. L., Wisniewski H. M., Diringer H. 1985; Biochemical differences among scrapie-associated fibrils support the biological diversity of scrapie agents. Journal of General Virology 66:1715–1722
    [Google Scholar]
  32. Kretzschmar H. A., DeArmond S. J., Forno L. S. 1985; Measurement of GFAP in hepatic encephalopathy by ELISA and transblots. Journal of Neuropathology and Experimental Neurology 44:459–471
    [Google Scholar]
  33. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  34. Le Prince G., Delaere P., Fages C., Duycaerts C., Hauw J. J., Tardy M. 1993; Alterations of glial fibrillary acidic protein mRNA level in the aging brain and in senile dementia of the Alzheimer type. Neuroscience Letters 151:71–73
    [Google Scholar]
  35. McKinley M. P., Bolton D. C., Prusiner S. B. 1983; A proteaseresistant protein is a structural component of the scrapie prion. Cell 35:57–62
    [Google Scholar]
  36. Manson J., McBride P., Hope J. 1992; Expression of the PrP gene in the brain of Sinc congenic mice and its relationship to the development of scrapie. Neurodegeneration 1:45–52
    [Google Scholar]
  37. Marsh R. F., Burger D., Eckroade R. J., Zu Rhein G. M., Hanson R. P. 1969; A preliminary report on the experimental host range of the transmissible mink encephalopathy agent. Journal of Infectious Diseases 120:713–719
    [Google Scholar]
  38. Muller W. E. G., Ushijima H., Schroder H. C., Forrest J. M. S., Schatton W. F. H., Rytik P. G., Heffner-Lauc M. 1993; Cyto-protective effect of NMDA receptor antagonists on prion protein (PrionSC)-induced toxicity in rat cortical cell cultures. European Journal of Pharmacology 246:261–267
    [Google Scholar]
  39. Oesch B., Westaway D., Walchli M., McKinley M. P., Kent S. B., Aebersold R., Barry R. A., Tempst P., Teplow D. B., Hood L. E., Prusiner S. B., Weissmann C. 1985; A cellular gene encodes scrapie PrP 27–30 protein. Cell 40:735–746
    [Google Scholar]
  40. Prusiner S. B. 1982; Novel proteinaceous infectious particles cause scrapie. Science 216:136–144
    [Google Scholar]
  41. Prusiner S. B., McKinley M. P., Bowman K. A., Bolton D. C., Bendheim P. E., Groth D. F., Glenner G. G. 1983; Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35:349–358
    [Google Scholar]
  42. Reed L. J., Muench H. 1938; A simple method of estimating fifty percent endpoints. American Journal of Hygiene 27:493–496
    [Google Scholar]
  43. Scott M. R. D., Foster D., Mirenda C., Serban D., Coufal F., Walchii M., Torchia M., Groth D., Carlson G., DeArmond S. J., Westaway D., Prusiner S. B. 1989; Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. Cell 59:847–857
    [Google Scholar]
  44. Wells G. A. H., Scott A. C., Johnson C. T., Gunning R. F., Hancock R. D., Jeffrey M., Dawson M., Bradley R. 1987; A novel progressive spongiform encephalopathy in cattle. Veterinary Record 121:419–420
    [Google Scholar]
  45. Wells G. A. H., Wilesmith J. W. 1995; The neuropathology and epidemiology of bovine spongiform encephalopathy. Brain Pathology 5:91–103
    [Google Scholar]
  46. Williams A. E., Dam A. M. V., Man-A-Hing W. K. H., Berkenbosch F., Eikelenboom P., Fraser H. 1994a; Cytokines, prostaglandins and lipocortin-1 are present in the brains of scrapie-infected mice. Brain Research 654:200–206
    [Google Scholar]
  47. Williams A. E., Lawson L. J., Perry V. H., Fraser H. 1994b; Characterization of the microglial response in murine scrapie. Neuropathology and Applied Neurobiology 20:47–55
    [Google Scholar]
  48. Williams E. S., Young S. 1980; Chronic wasting disease of captive mule deer: a spongiform encephalopathy. Journal of Wildlife Diseases 16:89–98
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-7-1601
Loading
/content/journal/jgv/10.1099/0022-1317-77-7-1601
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error