1887

Abstract

Glycoprotein gB is the most highly conserved glycoprotein in the herpesvirus family and plays a critical role in virus entry and fusion. Glycoprotein gB of herpes simplex virus type 1 contains a hydrophobic stretch of 69 aa near the carboxy terminus that is essential for its biological activity. To determine the role(s) of specific amino acids in the carboxy-terminal hydrophobic region, a number of amino acids were mutagenized that are highly conserved in this region within the gB homologues of the family . Three conserved residues in the membrane anchor domain, namely A786, A790 and A791, as well as amino acids G743, G746, G766, G770 and P774, that are non-variant in , were mutagenized. The ability of the mutant proteins to rescue the infectivity of the gB-null virus, K082, in was measured by a complementation assay. All of the mutant proteins formed dimers and were incorporated in virion particles produced in the complementation assay. Mutants G746N, G766N, F770S and P774L showed negligible complementation of K082, whereas mutant G743R showed a reduced activity. Virion particles containing these four mutant glycoproteins also showed a markedly reduced rate of entry compared to the wild-type. The results suggest that non-variant residues in the carboxy-terminal hydrophobic region of the gB protein may be important in virus infectivity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-12-3189
1999-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/12/0803189.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-12-3189&mimeType=html&fmt=ahah

References

  1. Berger E. A. 1997; HIV entry and tropism: the chemokine receptor connection. AIDS 11:Suppl. AS3–16
    [Google Scholar]
  2. Bold S., Ohlin M., Garten W., Radsak K. 1996; Structural domains involved in human cytomegalovirus glycoprotein B-mediated cell fusion. Journal of General Virology 77:2297–2302
    [Google Scholar]
  3. Bzik D. J., Fox B. A., DeLuca N. A., Person S. 1984; Nucleotide sequence specifying the glycoprotein gene gB of herpes simplex virus type 1. Virology 133:301–314
    [Google Scholar]
  4. Cai W., Gu B., Person S. 1988a; Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. Journal of Virology 62:2596–2604
    [Google Scholar]
  5. Cai W., Person S., DebRoy C., Gu B. 1988b; Functional regions and structural features of the gB glycoprotein of herpes simplex virus type 1. Journal of Molecular Biology 201:575–588
    [Google Scholar]
  6. Casson P., Bonfacino N. A. 1992; Role of transmembrane domain interactions in the assembly of class II MHC molecules. Science 258:659–662
    [Google Scholar]
  7. Chiang H.-Y., Cohen G. H., Eisenberg R. J. 1994; Identification of functional regions of herpes simplex virus glycoprotein gD by using linker-insertion mutagenesis. Journal of Virology 68:2529–2543
    [Google Scholar]
  8. Chou P. Y., Fasman G. D. 1978; Prediction of the secondary structure of proteins from their amino acid sequence. Advances in Protein Chemistry 47:145–148
    [Google Scholar]
  9. Claesson-Welsh L., Spear P. G. 1986; Oligomerization of herpes simplex virus glycoprotein B. Journal of Virology 60:803–806
    [Google Scholar]
  10. Davis-Poynter N., Bell S., Minson T., Browne H. 1994; Analysis of the contributions of herpes simplex virus type 1 membrane proteins to the induction of the cell-cell fusion. Journal of Virology 68:7586–7590
    [Google Scholar]
  11. Derbyshire K. M., Salvo J. J., Grindley N. D. F. 1986; A simple and efficient procedure for saturation mutagenesis using mixed oligonucleotides. Gene 46:145–152
    [Google Scholar]
  12. Desai P., Homa F. L., Person S., Glorioso J. C. 1994; A genetic selection method for the transfer of HSV-1 glycoprotein B mutations from plasmid to the viral genome: preliminary characterization of transdominance and entry kinetics of mutant viruses. Virology 204:312–322
    [Google Scholar]
  13. Freed E. O., Martin M. A. 1995; The role of human immunodeficiency virus type 1 envelope glycoproteins in virus infection. Journal of Biological Chemistry 270:23883–23886
    [Google Scholar]
  14. Gage P. J., Levine M., Glorioso J. 1993; Syncytium inducing mutations localize to discrete regions within the cytoplasmic domain of herpes simplex virus type 1 glycoprotein B. Journal of Virology 67:2191–2201
    [Google Scholar]
  15. Gaudin Y., Ruigrok R. W. H., Brunner J. 1995; Low-pH induced conformational changes in viral fusion proteins: implications for the fusion mechanism. Journal of General Virology 76:1541–1556
    [Google Scholar]
  16. Gilbert R., Ghosh H. P. 1993; Immunoelectron microscopic localization of herpes simplex virus glycoprotein gB in the nuclear envelope of infected cells. Virus Research 28:217–231
    [Google Scholar]
  17. Gilbert R., Ghosh K., Rasile L., Ghosh H. P. 1994; Membrane anchoring domain of herpes simplex virus glycoprotein gB is sufficient for nuclear envelope localization. Journal of Virology 68:2272–2285
    [Google Scholar]
  18. Handler C. G., Cohen G. H., Eisenberg R. J. 1996a; Cross-linking of glycoprotein oligomers during herpes simplex virus type 1 entry. Journal of Virology 70:6076–6082
    [Google Scholar]
  19. Handler C. G., Eisenberg R. J., Cohen G. H. 1996b; Oligomeric structure of glycoproteins in herpes simplex virus type 1. Journal of Virology 70:6067–6075
    [Google Scholar]
  20. Hernandez L. D., Hoffman L. R., Wolfsberg T. G., White J. M. 1996; Virus-cell and cell-cell fusion. Annual Review of Cell and Developmental Biology 12:627–661
    [Google Scholar]
  21. Herold B. C., WuDunn D., Soltys S., Spear P. G. 1991; Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and infectivity. Journal of Virology 65:1090–1098
    [Google Scholar]
  22. Highlander S. L., Cai W. H., Person S., Levine M., Glorioso J. C. 1988; Monoclonal antibodies define a domain on herpes simplex virus glycoprotein B involved in virus penetration. Journal of Virology 62:1881–1888
    [Google Scholar]
  23. Highlander S. L., Dorney D. J., Gage P. J., Holland T. C., Cai H., Person S., Levine M., Glorioso J. C. 1989; Identification of mar mutations in herpes simplex virus type 1 glycoprotein B which alter antigenic structure and function in virus penetration. Journal of Virology 63:730–738
    [Google Scholar]
  24. Kopp A., Mettenleiter T. C. 1992; Stable rescue of a glycoprotein gII deletion mutant of pseudorabies virus by glycoprotein gI of bovine herpes virus 1. Journal of Virology 66:2754–2764
    [Google Scholar]
  25. Kunkel T., Roberts J. D., Zakour R. A. 1987; Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods in Enzymology 154:367–382
    [Google Scholar]
  26. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–120
    [Google Scholar]
  27. Laquerre S., Person S., Glorioso J. C. 1996; Glycoprotein B of herpes simplex virus type 1 oligomerizes through the intermolecular interaction of a 28-amino acid domain. Journal of Virology 70:1640–1650
    [Google Scholar]
  28. Laquerre S., Anderson D. B., Argnani R., Glorioso J. C. 1998; Herpes simplex virus type 1 glycoprotein B requires a cysteine residue at position 633 for folding, processing and incorporation into mature infectious virus particles. Journal of Virology 72:4940–4949
    [Google Scholar]
  29. Levy-Mintz P., Kielian M. 1992; Mutagenesis of the putative fusion domain of Semliki Forest virus spike protein. Journal of Virology 65:4592–4300
    [Google Scholar]
  30. Li Y., van Drunen Littel-van den Hurk S., Liang X., Babiuk L. A. 1997; Functional analysis of the transmembrane anchor region of bovine herpesvirus 1 glycoprotein gB. Virology 228:39–54
    [Google Scholar]
  31. Ligas M. W., Johnson D. C. 1988; A herpes simplex virus mutant in which glycoprotein D sequences are replaced by β-galactosidase sequences binds to but is unable to penetrate into cells. Journal of Virology 62:1486–1494
    [Google Scholar]
  32. Little S. P., Jofre J. T., Courtney R. J., Schaffer P. A. 1981; A virion-associated glycoprotein essential for infectivity of herpes simplex virus type-1. Virology 114:149–160
    [Google Scholar]
  33. Mettenleiter T. C., Spear P. G. 1994; Glycoprotein B gB (gII) of pseudorabies virus can functionally substitute for glycoprotein gB in herpes simplex virus type 1. Journal of Virology 68:500–504
    [Google Scholar]
  34. Misra V., Blewett E. L. 1991; Construction of herpes simplex viruses that are pseudodiploid for the glycoprotein B gene: a strategy for studying the function of an essential herpesvirus gene. Journal of General Virology 72:385–392
    [Google Scholar]
  35. Montgomery R. I., Warner M. S., Lum B. J., Spear P. G. 1996; Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 87:427–436
    [Google Scholar]
  36. Navarro D., Paz P., Pereira L. 1992; Domains of herpes simplex virus I glycoprotein B that function in virus penetration, cell-to-cell spread, and cell fusion. Virology 186:99–112
    [Google Scholar]
  37. Pellett P. E., Kousoulas K. G., Pereira L., Roizman B. 1985; Anatomy of the herpes simplex virus 1 strain F glycoprotein B gene: primary sequence and predicted protein structure of the wild type and monoclonal antibody-resistant mutants. Journal of Virology 53:243–253
    [Google Scholar]
  38. Pereira L. 1994; Function of glycoprotein B homologues of the family Herpesviridae. Infectious Agents of Disease 3:9–28
    [Google Scholar]
  39. Rasile L., Ghosh K., Raviprakash K., Ghosh H. P. 1993; Effects of deletions in the carboxy-terminal hydrophobic region of herpes simplex virus glycoprotein gB on intracellular transport and membrane anchoring. Journal of Virology 67:4856–4866
    [Google Scholar]
  40. Rauh I., Weiland F., Fehler F., Keil G., Mettenleiter T. C. 1991; Pseudorabies virus mutants lacking the essential glycoprotein gII can be complemented by glycoprotein gI of bovine herpes virus 1. Journal of Virology 65:621–631
    [Google Scholar]
  41. Reschke M., Reis B., Nöding K., Rohsiepe D., Richter A., Mockenhaupt T., Garten W., Radsak K. 1995; Constitutive expression of human cytomegalovirus glycoprotein B (gpUL55) with mutagenized carboxy-terminal hydrophobic domains. Journal of General Virology 76:113–122
    [Google Scholar]
  42. Roizman B., Sears A. 1996; Herpes simplex viruses and their replication. In Fields Virology pp 2231–2295 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven Publishers;
    [Google Scholar]
  43. Roop C., Hutchinson L., Johnson D. C. 1993; A mutant herpes simplex virus type 1 unable to express glycoprotein L cannot enter cells, and its particles lack glycoprotein H. Journal of Virology 67:2285–2297
    [Google Scholar]
  44. Sergel-Germans T., McQuain C., Morrison T. 1994; Mutations in the fusion peptide and heptad repeat regions of the Newcastle disease virus fusion protein that block fusion. Journal of Virology 68:7654–7658
    [Google Scholar]
  45. Shai Y. 1995; Molecular recognition between membrane-spanning polypeptides. Trends in Biochemical Sciences 20:460–464
    [Google Scholar]
  46. Skehel J. J., Bizebard T., Bullough P. A., Hughson F. M., Knossow M., Steinhauer D. A., Wharton S. A., Wiley D. C. 1995; Membrane fusion by influenza hemagglutinin. Cold Spring Harbor Symposia on Quantitative Biology 60:573–580
    [Google Scholar]
  47. Spear P. G. 1993; Membrane fusion induced by herpes simplex virus. In Viral Fusion Mechanisms pp. 201–232 Edited by Bentz J. Boca Raton: CRC Press;
    [Google Scholar]
  48. Terry-Allison T., Montgomery R. I., Whitbeck J. C., Xu R., Cohen G. H., Eisenberg R., Spear P. G. 1998; HveA (herpes virus entry mediator A), a coreceptor for herpes simplex virus entry also participates in virus-induced cell fusion. Journal of Virology 72:5802–5810
    [Google Scholar]
  49. Torrisi M. R., DiLazzaro C., Pavan A., Pereira L., Campadelli-Fiume G. 1992; Herpes simplex virus envelopment and maturation studies by fracture label. Journal of Virology 66:554–561
    [Google Scholar]
  50. Tugizov S., Wang Y., Quadri I., Navarro D., Maidji E., Pereira L. 1995; Mutated forms of human cytomegalovirus glycoprotein B are impaired in inducing syncytium formation. Virology 209:580–591
    [Google Scholar]
  51. Turner A., Brunn B., Minson T., Browne H. 1998; Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a COS cell transfection system. Journal of Virology 72:873–875
    [Google Scholar]
  52. Wilson D. W., Davis-Poynter N., Minson A. C. 1994; Mutation in the cytoplasmic tail of herpes simplex virus glycoprotein H suppress cell fusion by a syncytial strain. Journal of Virology 68:6985–6993
    [Google Scholar]
  53. Yang Y.-C., Ciarletta A. B., Temple P. A., Chung M. P., Kovacic S., Witek-Giannoti J. S., Leary A. C., Kriz R., Donahue R. E., Wong G., Clark S. C. 1986; Human Il-3 (multi-CSF): identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3. Cell 47:3–10
    [Google Scholar]
  54. Zhang L., Ghosh H. P. 1994; Characterization of the putative fusogenic domain in vesicular stomatitis virus glycoprotein G. Journal of Virology 68:2186–2193
    [Google Scholar]
  55. Zheng Z., Maidji E., Tugizov S., Pereira L. 1996; Mutations in the carboxy-terminal hydrophobic sequence of human cytomegalovirus glycoprotein B alter transport and protein chaperone binding. Journal of Virology 70:8029–8040
    [Google Scholar]
  56. Zhu Q., Courtney R. J. 1988; Chemical crosslinking of glycoproteins on the envelope of herpes simplex virus. Virology 167:377–384
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-12-3189
Loading
/content/journal/jgv/10.1099/0022-1317-80-12-3189
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error