1887

Abstract

Rotavirus NSP5 is a non-structural phosphoprotein with putative autocatalytic kinase activity, and is present in infected cells as various isoforms having molecular masses of 26, 28 and 30–34 kDa. We have previously shown that NSP5 forms oligomers and interacts with NSP6 in yeast cells. Here we have mapped the domains of NSP5 responsible for these associations. Deletion mutants of the rotavirus YM NSP5 were constructed and assayed for their ability to interact with full-length NSP5 and NSP6 using the yeast two-hybrid assay. The homomultimerization domain was mapped to the 20 C-terminal aa of the protein, which have a predicted α-helical structure. A deletion mutant lacking the 10 C-terminal aa (ΔC10) failed to multimerize both in yeast cells and in an affinity assay. When transiently expressed in MA104 cells, NSP5 became hyperphosphorylated (30–34 kDa isoforms). In contrast, the ΔC10 mutant produced forms equivalent to the 26 and 28 kDa species, but was poorly hyperphosphorylated, suggesting that multimerization is important for this proposed activity of the protein. The interaction domain with NSP6 was found to be present in the 35 C-terminal aa of NSP5, overlapping the multimerization domain of the protein, and suggesting that NSP6 might have a regulatory role in the self-association of NSP5. NSP6 was also found to interact with wild-type NSP5, but not with its mutant ΔC10, in cells transiently transfected with plasmids encoding these proteins, confirming the relevance of the 10 C-terminal aa for the formation of the heterocomplex.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-3-821
2000-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/3/0810821a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-3-821&mimeType=html&fmt=ahah

References

  1. Afrikanova, I., Miozzo, M. C., Giambiagi, S. & Burrone, O. (1996). Phosphorylation generates different forms of rotavirus NSP5.Journal of General Virology 77, 2059-2065.[CrossRef] [Google Scholar]
  2. Afrikanova, I., Fabbretti, E., Miozzo, M. C. & Burrone, O. R. (1998). Rotavirus NSP5 phosphorylation is up-regulated by interaction with NSP2.Journal of General Virology 79, 2679-2686. [Google Scholar]
  3. Aponte, C., Poncet, D. & Cohen, J. (1996). Recovery and characterization of a replicase complex in rotavirus-infected cells by using a monoclonal antibody against NSP2.Journal of Virology 70, 985-991. [Google Scholar]
  4. Blackhall, J., Fuentes, A., Hansen, K. & Magnusson, G. (1997). Serine protein kinase activity associated with rotavirus phosphoprotein NSP5.Journal of Virology 71, 138-144. [Google Scholar]
  5. Blackhall, J., Munoz, M., Fuentes, A. & Magnusson, G. (1998). Analysis of rotavirus nonstructural protein NSP5 phosphorylation.Journal of Virology 72, 6398-6405. [Google Scholar]
  6. Bremont, M., Chabanne-Vautherot, D. & Cohen, J. (1993). Sequence analysis of three non structural proteins of a porcine group C (Cowden strain) rotavirus.Archives of Virology 130, 85-92.[CrossRef] [Google Scholar]
  7. Clemons, P. A. (1999). Design and discovery of protein dimerizers.Current Opinion in Chemical Biology 3, 112-115.[CrossRef] [Google Scholar]
  8. Estes, M. K. & Cohen, J. (1989). Rotavirus gene structure and function.Microbiology Review 53, 410-449. [Google Scholar]
  9. Fabbretti, E., Afrikanova, I., Vascotto, F. & Burrone, O. E. (1999). Two non-structural rotavirus proteins, NSP2 and NSP5, form viroplasm-like structures in vivo.Journal of General Virology 80, 333-339. [Google Scholar]
  10. Farrar, M. A., Alberola-IIa, J. & Perlmutter, R. M. (1996). Activation of the raf-1 kinase cascade by coumermycin-induced dimerization.Nature 383, 178-181.[CrossRef] [Google Scholar]
  11. Frishman, D. & Argos, P. (1996). Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence.Protein Engineering 9, 133-142.[CrossRef] [Google Scholar]
  12. Fritz-Wolf, K., Schnyder, T., Wallimann, T. & Wolfgang, K. (1996). Structure of mitochondrial creatine kinase.Nature 381, 341-345.[CrossRef] [Google Scholar]
  13. Fuerst, T. R., Niles, E. G., Studier, F. W. & Moss, B. (1986). Eukaryotic transient expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase.Proceedings of the National Academy of Sciences, USA 83, 8122-8126.[CrossRef] [Google Scholar]
  14. Gallegos, C. O. & Patton, J. T. (1989). Characterization of rotavirus replication intermediates: a model for the assembly of single-shelled particles.Virology 172, 616-627.[CrossRef] [Google Scholar]
  15. González, S. A. & Burrone, O. R. (1991). Rotavirus NS26 is modified by addition of single O-linked residues of N-acetylglucosamine.Virology 182, 8-16.[CrossRef] [Google Scholar]
  16. González, R. A., Torres-Vega, M. A., López, S. & Arias, C. F. (1998). In vivo interactions among rotavirus nonstructural proteins.Archives of Virology 143, 981-996.[CrossRef] [Google Scholar]
  17. Heldin, C.-H. (1995). Dimerization of cell surface receptors in signal transduction.Cell 80, 213-223.[CrossRef] [Google Scholar]
  18. Johnson, L. N. (1993). The effects of phosphorylation on the structure and function of proteins.Annual Review of Biophysics and Biomolecular Structure 22, 199-232.[CrossRef] [Google Scholar]
  19. Kapikian, A. Z. & Chanock, R. M. (1996). Rotaviruses. In Fields Virology, pp. 1657-1708. Edited by B. N. Fields, D. N. Knipe & P. M. Howley. New York: Raven Press.
  20. Kattoura, M. D., Chen, X. & Patton, J. T. (1994). The rotavirus RNA-binding protein NS35 (NSP2) forms 10S multimers and interacts with the viral RNA polymerase.Virology 202, 803-813.[CrossRef] [Google Scholar]
  21. Klemm, J. D., Schreiber, S. L. & Crabtree, G. R. (1998). Dimerization as a regulatory mechanism in signal transduction.Annual Review of Immunology 16, 569-592.[CrossRef] [Google Scholar]
  22. Legrain, P., Dokhelar, M.-C. & Transy, C. (1994). Detection of protein–protein interactions using different vectors in the two-hybrid system.Nucleic Acids Research 22, 3241-3242.[CrossRef] [Google Scholar]
  23. López, S. & Arias, C. F. (1993). Protein NS26 is highly conserved among porcine rotavirus strains.Nucleic Acids Research 21, 1042.[CrossRef] [Google Scholar]
  24. López, S., Espinosa, R., Greenberg, H. B. & Arias, C. F. (1994). Mapping the subgroup epitopes of rotavirus protein VP6.Virology 204, 153-162.[CrossRef] [Google Scholar]
  25. Luo, Z., Tzivion, G., Belshaw, P. J., Vavvas, D., Marshall, M. & Avruch, J. (1996). Oligomerization activates c-Raf-1 through a Ras dependent mechanism.Nature 383, 181-185.[CrossRef] [Google Scholar]
  26. Mattion, N. M., Mitchell, D. B., Both, G. W. & Estes, M. K. (1991). Expression of rotavirus proteins encoded by alternative open reading frames of genome segment 11.Virology 181, 295-304.[CrossRef] [Google Scholar]
  27. Mattion, N. M., Cohen, J. & Estes, M. K. (1994). The rotavirus proteins. In Viral Infections of the Gastrointestinal Tract, pp. 169-249. Edited by A. Kapikina. New York: Marcel Dekker.
  28. Newton, A. (1997). Regulation of protein kinase C.Current Opinion in Cell Biology 9, 161-167.[CrossRef] [Google Scholar]
  29. Patton, J. T. (1995). Structure and function of the rotavirus RNA-binding proteins.Journal of General Virology 76, 2633-2644.[CrossRef] [Google Scholar]
  30. Poncet, D., Lindenbaum, P., Lharidon, R. & Cohen, J. (1997). In vivo and in vitro phosphorylation of rotavirus NSP5 correlates with its localization in viroplasms.Journal of Virology 71, 34-41. [Google Scholar]
  31. Prasad, B. V. & Chiu, W. (1994). Structure of rotavirus.Current Topics in Microbiology and Immunology 185, 9-29. [Google Scholar]
  32. Roe, J. L., Durfee, T., Zupan, J. R., Repetti, P. P., McLean, G. B. & Zambryski, P. C. (1997). TOUSLED is a nuclear serine/threonine protein kinase that requires a coiled-coil region for oligomerization and catalytic activity.Journal of Biological Chemistry 272, 5838-5845.[CrossRef] [Google Scholar]
  33. Rossi, F., Labourier, E., Forné, T., Divita, G., Derancourt, J., Riou, J. F., Antoine, E., Cathala, G., Brunel, C. & Tazi, J. (1996). Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I.Nature 381, 80-82.[CrossRef] [Google Scholar]
  34. Suzuki, T. & Furukohri, T. (1994). Evolution of phosphagen kinase. Primary structure of glycocyamine kinase and arginine kinase from invertebrates.Journal of Molecular Biology 237, 353-357.[CrossRef] [Google Scholar]
  35. Welch, S. K., Crawford, S. E. & Estes, M. K. (1989). Rotavirus SA11 genome segment 11 protein is a nonstructural phosphoprotein.Journal of Virology 63, 3974-3982. [Google Scholar]
  36. Wu, J. Y., Zhou, Z. Y., Judd, A., Cartwright, C. A. & Robinson, W. S. (1990). The hepatitis B virus-encoded transcriptional transactivator hbx appears to be a novel protein serine/threonine kinase.Cell 63, 687-695.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-3-821
Loading
/content/journal/jgv/10.1099/0022-1317-81-3-821
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error