1887

Abstract

According to their cellular receptor use, measles virus (MV) strains can be separated into two phenotypes, CD46-using and CD46-non-using. A long chimeric receptor, CD46CD[55–46], was generated from the CD46 backbone, encompassing the four short consensus repeat (SCR) domains of CD46 linked via a flexible glycine hinge to SCR1 and SCR2 of CD55, SCR3 and SCR4 of CD46 and the STP, transmembrane and cytoplasmic tail of CD46. This chimeric receptor was proficient for MV binding but deficient in mediating MV-induced cell-to-cell fusion and virus replication, possibly due to the extended distance between the MV haemagglutinin (H) binding site (CD46 SCR1–SCR2) and the cell membrane. When coexpressed with either wild-type CD46 or CD150, this fusion-incompetent receptor exerted a dominant negative effect and inhibited both cell-to-cell fusion and entry of MV with CD46-using, but not CD46-non-using, phenotype. A soluble octameric CD46–C4bpα exhibited similar CD46- and CD150-mediated fusion inhibition properties only against CD46-using MV. This suggests that the long CD46CD[55–46] receptor acts by sequestering incoming MV prior to its binding to the shorter functional CD46 or CD150 receptor.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-5-1147
2002-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/5/0831147a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-5-1147&mimeType=html&fmt=ahah

References

  1. Adams E. M., Brown M. C., Nunge M., Krych M., Atkinson J. P. 1991; Contribution of the repeating domains of membrane cofactor protein (CD46) of the complement system to ligand binding and cofactor activity. Journal of Immunology 147:3005–3011
    [Google Scholar]
  2. Bartz R. U., Brinckmann U., Dunster L. M., Rima B., ter Meulen V., Schneider-Schaulies J. 1996; Mapping amino acids of the measles virus hemagglutinin responsible for receptor (CD46) downregulation. Virology 224:334–337
    [Google Scholar]
  3. Buchholz C. J., Schneider U., Devaux P., Gerlier D., Cattaneo R. 1996; Cell entry by measles virus: long hybrid receptors uncouple binding from membrane fusion. Journal of Virology 70:3716–3723
    [Google Scholar]
  4. Buchholz C. J., Koller D., Devaux P., Mumenthaler C., Schneider-Schaulies J., Braun W., Gerlier D., Cattaneo R. 1997; Mapping of the primary binding site of measles virus to its receptor CD46. Journal of Biological Chemistry 272:22072–22079
    [Google Scholar]
  5. Casanovas J. M., Larvie M., Stehle T. 1999; Crystal structure of two CD46 domains reveals an extended measles virus-binding surface. EMBO Journal 18:2911–2922
    [Google Scholar]
  6. Cattaneo R., Rose J. K. 1993; Cell fusion by the envelope glycoproteins of persistent measles viruses which caused lethal human brain disease. Journal of Virology 67:1493–1502
    [Google Scholar]
  7. Chen L., Gorman J. J., McKimm-Breschkin J., Lawrence L. J., Tulloch P. A., Smith B. J., Colman P. M., Lawrence M. 2001; The structure of the fusion glycoprotein of Newcastle disease virus suggests a novel paradigm for the molecular mechanism of membrane fusion. Structure 9:255–266
    [Google Scholar]
  8. Christiansen D., Devaux P., Reveil B., Evlashev A., Horvat B., Lamy J., Rabourdin-Combe C., Cohen J. H. M., Gerlier D. 2000a; Octamerization enables soluble CD46 receptor to neutralize measles virus in vitro and in vivo. Journal of Virology 74:4672–4678
    [Google Scholar]
  9. Christiansen D., Loveland B., Kyriakou P., Lanteri M., Escoffier C., Gerlier D. 2000b; Interaction of CD46 with measles virus: accessory role of CD46 short consensus repeat IV. Journal of General Virology 81:911–917
    [Google Scholar]
  10. Christiansen D., Loveland B., Kyriakou P., Lanteri M., Rubinstein E., Gerlier D. 2000c; Chimeric CD46/DAF molecules reveal a cryptic functional role for SCR1 of DAF in regulating complement activation. Molecular Immunology 37:687–696
    [Google Scholar]
  11. Devaux P., Loveland B., Christiansen D., Milland J., Gerlier D. 1996; Interactions between the ectodomains of haemagglutinin and CD46 as a primary step in measles virus entry. Journal of General Virology 77:1477–1481
    [Google Scholar]
  12. Devaux P., Buchholz C. J., Schneider U., Escoffier C., Catteneo R., Gerlier D. 1997; CD46 short consensus repeats III and IV enhance measles virus binding but impair soluble haemagglutinin binding. Journal of Virology 71:4157–4160
    [Google Scholar]
  13. Dörig R. E., Marcil A., Chopra A., Richardson C. D. 1993; The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75:295–305
    [Google Scholar]
  14. Erlenhoefer C., Wurzer W. J., Löffler S., Schneider-Schaulies S., ter Meulen V., Schneider-Schaulies J. 2001; CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition. Journal of Virology 75:4499–4505
    [Google Scholar]
  15. Escoffier C., Gerlier D. 1999; Infection of chicken embryonic fibroblast by measles virus: adaptation at the virus entry level. Journal of Virology 73:5220–5224
    [Google Scholar]
  16. Fayolle J., Verrier B., Buckland R., Wild T. F. 1999; Characterization of a natural mutation in an antigenic site on the fusion protein of measles virus that is involved in neutralization. Journal of Virology 73:787–790
    [Google Scholar]
  17. Giraudon P., Wild T. F. 1985; Correlation between epitopes on hemagglutinin of measles virus and biological activities: passive protection by monoclonal antibodies is related to their hemagglutination inhibiting activity. Virology 144:46–58
    [Google Scholar]
  18. Giraudon P., Jacquier M. F., Wild T. F. 1988; Antigenic analysis of African measles virus field isolates: identification and localisation of one conserved and two variable epitope sites on the NP protein. Virus Research 10:137–152
    [Google Scholar]
  19. Hammond A. L., Plemper R. K., Zhang J., Schneider U., Russell S. J., Cattaneo R. 2001; Single-chain antibody displayed on a recombinant measles virus confers entry through the tumor-associated carcinoembryonic antigen. Journal of Virology 75:2087–2096
    [Google Scholar]
  20. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pearse L. R. 1989; Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61–68
    [Google Scholar]
  21. Hsu E. C., Sarangi F., Ioro C., Sidhu M. S., Udem S. A., Dillehay D. L., Xu W., Rota P. A., Bellini W. J., Richardson C. D. 1998; A single amino acid change in the hemagglutinin protein of measles virus determines its ability to bind CD46 and reveals another receptor on marmoset B cells. Journal of Virology 72:2905–2916
    [Google Scholar]
  22. Hsu E. C., Iorio C., Sarangi F., Khine A. A., Richardson C. D. 2001; CDw150 (SLAM) is a receptor for lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology 279:9–21
    [Google Scholar]
  23. Iwata K., Seya T., Yanagi Y., Pesando J. M., Johnson P. M., Okabe M., Ueda S., Ariga H., Nagasawa S. 1995; Diversity of sites for measles virus binding and for inactivation of complement C3b and C4b on membrane cofactor protein CD46. Journal of Biological Chemistry 270:15148–15152
    [Google Scholar]
  24. Kobune F. H., Sakata H., Sugiura A. 1990; Marmoset lymphoblastoid cells as sensitive host for isolation of measles virus. Journal of Virology 64:700–705
    [Google Scholar]
  25. Lamb R. A., Joshi S. B., Dutch R. E. 1999; The paramyxovirus fusion protein forms an extremely stable core trimer: structural parallels to influenza virus haemagglutinin and HIV-1 gp41. Molecular Membrane Biology 16:11–19
    [Google Scholar]
  26. Lecouturier V., Fayolle J., Caballero M., Carabana J., Celma M. L., Fernandez-Munoz R., Wild T. F., Buckland R. 1996; Identification of two amino acids in the hemagglutinin glycoprotein of measles virus (MV) that govern hemadsorption, HeLa cell fusion, and CD46 downregulation: phenotypic markers that differentiate vaccine and wild-type MV strains. Journal of Virology 70:4200–4204
    [Google Scholar]
  27. Liszewski M. K., Post T. W., Atkinson J. P. 1991; Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. Annual Review of Immunology 9:431–455
    [Google Scholar]
  28. Malvoisin E., Wild T. F. 1993; Measles virus glycoproteins: studies on the structure and interaction of the haemagglutinin and fusion proteins. Journal of General Virology 74:2365–2372
    [Google Scholar]
  29. Manchester M., Valsamakis A., Kaufman R., Liszewski M. K., Alvarez J., Atkinson J. P., Lublin D. M., Oldstone M. B. A. 1995; Measles virus and C3 binding sites are distinct on membrane cofactor protein (CD46). Proceedings of the National Academy of Sciences, USA 92:2303–2307
    [Google Scholar]
  30. Manchester M., Gairin J. E., Patterson J. B., Alvarez J., Liszewski M. K., Eto D. S., Atkinson J. P., Oldstone M. B. A. 1997; Measles Virus recognizes its receptor, CD46, via two distinct binding domains within SCR1–2. Virology 233:174–184
    [Google Scholar]
  31. Manchester M., Eto D. S., Valsamakis A., Liton P. B., Fernandez-Munoz R., Rota P. A., Bellini W. J., Forthal D. N., Oldstone M. B. 2000; Clinical isolates of measles virus use CD46 as a cellular receptor. Journal of Virology 74:3967–3974
    [Google Scholar]
  32. Manié S. N., Debreyne S., Vincent S., Gerlier D. 2000; Measles virus structural components are enriched into lipid raft microdomains: a potential cellular location for virus assembly. Journal of Virology 74:305–311
    [Google Scholar]
  33. Mumenthaler C., Schneider U., Buchholz C. J., Koller D., Braun W., Catteneo R. 1997; A 3D model for the measles virus receptor CD46 based on homology modeling, Monte Carlo simulations, and hemagglutinin binding studies. Protein Science 6:588–597
    [Google Scholar]
  34. Murikami Y., Seya T., Kurita M., Fukui A., Ueda S., Nagasawa S. 1998; Molecular cloning of membrane cofactor protein (MCP, CD46) on B95a cell, an Epstein-Barr virus-transformed marmoset B cell line: B95a-MCP is susceptible to infection by the CAM, but not by the Nagatha strain of the measles virus. Biochemical Journal 330:1351–1359
    [Google Scholar]
  35. Murikami Y., Fukui A., Seya T., Ueda S., Nagasawa S. 1999; Effect of mutations at the residues R25, D27, P69 and N70 of B95a-MCP on receptor activities for the measles viruses Nagahata wild-type strain and CAM vaccine strain. International Journal of Molecular Medicine 3:25–32
    [Google Scholar]
  36. Naniche D., Varior-Krishnan G., Cervoni F., Wild T. F., Rossi B., Rabourdin-Combe C., Gerlier D. 1993; Human Membrane Cofactor Protein (CD46) acts as a cellular receptor for measles virus. Journal of Virology 67:6025–6032
    [Google Scholar]
  37. Ono N., Tatsuo H., Tanaka K., Minagawa H., Yanagi Y. 2001a; V Domain of human SLAM (CDw150) is essential for its function as measles virus receptor. Journal of Virology 75:1594–1600
    [Google Scholar]
  38. Ono N., Tatsuo H., Hidaka Y., Aoki T., Minagawa H., Yanagi Y. 2001b; Measles virus on throat swabs from measles patients use signalling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. Journal of Virology 75:4399–4401
    [Google Scholar]
  39. Parks C. L., Lerch R. A., Walpita P., Wang H. P., Sidhu M. S., Udem S. A. 2001; Comparison of predicted amino acid sequences of measles virus strains in the Edmonston vaccine lineage. Journal of Virology 75:910–920
    [Google Scholar]
  40. Plemper R. K., Hammond A. L., Cattaneo R. 2000; Characterization of a region of the measles virus hemagglutinin sufficient for its dimerization. Journal of Virology 74:6485–6493
    [Google Scholar]
  41. Radecke F., Spielhofer P., Schneider H., Kaelin K., Huber M., Dotsch C., Christiansen G., Billeter M. A. 1995; Rescue of measles viruses from cloned DNA. EMBO Journal 14:5773–5784
    [Google Scholar]
  42. Schneider U., Bullough F., Vongpunsawad S., Russell S. J., Cattaneo R. 2000; Recombinant measles viruses efficiently entering cells through targeted receptors. Journal of Virology 74:9928–9936
    [Google Scholar]
  43. Schneider-Schaulies J., Dunster L. M., Kobune F., Rima B., ter Meulen V. 1995a; Differential downregulation of CD46 by measles virus strains. Journal of Virology 69:7257–7259
    [Google Scholar]
  44. Schneider-Schaulies J., Schnorr J. J., Brinckmann U., Dunster L. M., Baczko K., Schneider-Schaulies S., ter Meulen V. 1995b; Receptor usage and differential downregulation of CD46 by measles virus wild type and vaccine strains. Proceedings of the National Academy of Sciences, USA 92:3943–3947
    [Google Scholar]
  45. Tanaka K., Xie M., Yanagi Y. 1998; The hemagglutinin of recent measles virus isolates induces cell fusion in a marmoset cell line, but not in other CD46-positive human and monkey cell lines, when expressed together with the F protein. Archives of Virology 143:213–225
    [Google Scholar]
  46. Tatsuo H., Okuma K., Tanaka K., Ono N., Minagawa H., Takade A., Matsuura Y., Yanagi Y. 2000a; Virus entry is a major determinant of cell tropism of Edmonston and wild-type strains of measles virus as revealed by vesicular stomatitis virus pseudotypes bearing their envelope proteins. Journal of Virology 74:4139–4145
    [Google Scholar]
  47. Tatsuo H., Ono N., Tanaka K., Yanagi Y. 2000b; SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897
    [Google Scholar]
  48. Wild T. F., Malvoisin E., Buckland R. 1991; Measles virus: both the haemagglutinin and fusion glycoproteins are required for fusion. Journal of General Virology 72:439–442
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-5-1147
Loading
/content/journal/jgv/10.1099/0022-1317-83-5-1147
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error