1887

Abstract

By selecting phage display libraries with immune sera from experimentally infected pigs, porcine B-cell epitopes in the open reading frame (ORF) 2, 3, 5 and 6 proteins of European-type porcine reproductive and respiratory syndrome virus (PRRSV) were identified. The sequences of all the epitopes were well conserved in European-type PRRSV and even between European- and American-type PRRSV. Accordingly, sera from pigs infected with American-type PRRSV cross-reacted with the European-type epitopes. Thus, this study showed, for the first time, the presence of highly conserved epitopes in the matrix protein and envelope glycoproteins of PRRSV. ORF5 and 6 epitopes localized to protein parts that are predicted to be hidden in PRRSV virions. In contrast, ORF2 and 3 epitopes localized to putative protein ectodomains. Due to the interesting localization, the sequence surrounding the ORF2 and 3 epitopes was subjected to closer scrutiny. A heptad motif, VSRRIYQ, which is present in a single copy in ORF2 and 3 proteins, was identified; this arrangement is completely conserved in all European-type PRRSV sequences available. The VSRRIYQ repeat motif colocalized closely with one of the ORF2 epitopes and secondary structure modelling showed that this segment of the ORF2 protein could form an amphipathic helix. Intriguingly, a mutation associated with virulence/attenuation of an American vaccine strain of PRRSV also localized to this ORF2 protein segment and affected the hydrophobic face of the predicted amphipathic helix. Further work is needed to determine whether these findings delineate a functional domain in the PRRSV ORF2 protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-6-1407
2002-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/6/0831407a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-6-1407&mimeType=html&fmt=ahah

References

  1. Allende R., Lewis T. L., Lu Z., Rock D. L., Kutish G. F., Ali A., Doster A. R., Osorio F. A. 1999; North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions. Journal of General Virology 80:307–315
    [Google Scholar]
  2. Auger I. E., Lawrence C. E. 1990; Identification of the most significant amphipathic helix with application to HIV and MHV envelope proteins. Computer Applications in the Biosciences 6:165–171
    [Google Scholar]
  3. Balasuriya U. B., MacLachlan N. J., De Vries A. A., Rossitto P. V., Rottier P. J. 1995; Identification of a neutralization site in the major envelope glycoprotein (GL) of equine arteritis virus. Virology 207:518–527
    [Google Scholar]
  4. Bøtner A., Nielsen J., Bille-Hansen V. 1994; Isolation of porcine reproductive and respiratory syndrome (PRRS) virus in a Danish swine herd and experimental infection of pregnant gilts with the virus. Veterinary Microbiology 40:351–360
    [Google Scholar]
  5. Chou P. Y., Fasman G. D. 1978; Prediction of the secondary structure of proteins from their amino acid sequence. Advances in Enzymology and Related Areas of Molecular Biology 47:45–148
    [Google Scholar]
  6. Clarke L., Carbon J. 1992; A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome 1976. Biotechnology 24:179–187
    [Google Scholar]
  7. Dea S., Gagnon C. A., Mardassi H., Pirzadeh B., Rogan D. 2000; Current knowledge on the structural proteins of porcine reproductive and respiratory syndrome (PRRS) virus: comparison of the North American and European isolates. Archives of Virology 145:659–688
    [Google Scholar]
  8. Dobbe J. C., van der Meer Y., Spaan W. J., Snijder E. J. 2001; Construction of chimeric arteriviruses reveals that the ectodomain of the major glycoprotein is not the main determinant of equine arteritis virus tropism in cell culture. Virology 288:283–294
    [Google Scholar]
  9. Drew T. W., Lowings J. P., Yapp F. 1997; Variation in open reading frames 3, 4 and 7 among porcine reproductive and respiratory syndrome virus isolates in the UK. Veterinary Microbiology 55:209–221
    [Google Scholar]
  10. Durand J. P., Climent I., Sarraseca J., Urinza A., Cortes E., Vela C., Casal I. 1997; Baculovirus expression of proteins of porcine reproductive and respiratory syndrome virus strain Olot/91. Involvement of ORF3 and ORF5 proteins in protection. Virus Genes 14:19–29
    [Google Scholar]
  11. Eisenberg D., Weiss R. M., Terwilliger T. C. 1984; The hydrophobic moment detects periodicity in protein hydrophobicity. Proceedings of the National Academy of Sciences, USA 81:140–144
    [Google Scholar]
  12. Faaberg K. S., Plagemann P. G. 1997; ORF 3 of lactate dehydrogenase-elevating virus encodes a soluble, nonstructural, highly glycosylated, and antigenic protein. Virology 227:245–251
    [Google Scholar]
  13. Gonin P., Mardassi H., Gagnon C. A., Massie B., Dea S. 1998; A nonstructural and antigenic glycoprotein is encoded by ORF3 of the IAF-Klop strain of porcine reproductive and respiratory syndrome virus. Archives of Virology 143:1927–1940
    [Google Scholar]
  14. Hauge H. H., Nissen-Meyer J., Nes I. F., Eijsink V. G. 1998; Amphiphilic α-helices are important structural motifs in the α and β peptides that constitute the bacteriocin lactococcin G: enhancement of helix formation upon α–β interaction. European Journal of Biochemistry 251:565–572
    [Google Scholar]
  15. Hedges J. F., Balasuriya U. B., MacLachlan N. J. 1999; The open reading frame 3 of equine arteritis virus encodes an immunogenic glycosylated, integral membrane protein. Virology 264:92–98
    [Google Scholar]
  16. Jesaitis A. J., Gizachew D., Dratz E. A., Siemsen D. W., Stone K. C., Burritt J. B. 1999; Actin surface structure revealed by antibody imprints: evaluation of phage-display analysis of anti-actin antibodies. Protein Science 8:760–770
    [Google Scholar]
  17. Katz J. B., Schafer A. L., Eernisse K. A., Landgraf J. G., Nelson E. A. 1995; Antigenic differences between European and American isolates of porcine reproductive and respiratory syndrome virus (PRRSV) are encoded by the carboxyterminal portion of viral open reading frame 3. Veterinary Microbiology 44:65–76
    [Google Scholar]
  18. Lager K. M., Mengeling W. L., Wesley R. D., Halbur P. G., Sorden S. D. 1998 Acute PRRS pp 449–453 American Association of Swine Practitioners;
    [Google Scholar]
  19. Leonard C. K., Spellman M. S., Riddle L., Harris R. J., Thomas J. N., Gregory T. J. 1990; Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. Journal of Biological Chemistry 265:10373–10382
    [Google Scholar]
  20. Loemba H. D., Mounir S., Mardassi H., Archambault D., Dea S. 1996; Kinetics of humoral immune response to the major structural proteins of the porcine reproductive and respiratory syndrome virus. Archives of Virology 141:751–761
    [Google Scholar]
  21. Madsen K. G., Hansen C. M., Madsen E. S., Strandbygaard B., Bøtner A., Sørensen K. J. 1998; Sequence analysis of porcine reproductive and respiratory syndrome virus of the American type collected from Danish swine herds. Archives of Virology 143:1683–1700
    [Google Scholar]
  22. Mardassi H., Massie B., Dea S. 1996; Intracellular synthesis, processing, and transport of proteins encoded by ORFs 5 to 7 of porcine reproductive and respiratory syndrome virus. Virology 221:98–112
    [Google Scholar]
  23. Mardassi H., Gonin P., Gagnon C. A., Massie B., Dea S. 1998; A subset of porcine reproductive and respiratory syndrome virus GP3 glycoprotein is released into the culture medium of cells as a non-virion-associated and membrane-free (soluble) form. Journal of Virology 72:6298–6306
    [Google Scholar]
  24. Meng X. J. 2000; Heterogeneity of porcine reproductive and respiratory syndrome virus: implications for current vaccine efficacy and future vaccine development. Veterinary Microbiology 74:309–329
    [Google Scholar]
  25. Mengeling W. L., Lager K. M., Vorwald A. C. 1998; Clinical consequences of exposing pregnant gilts to strains of porcine reproductive and respiratory syndrome (PRRS) virus isolated from field cases of ‘atypical’ PRRS. American Journal of Veterinary Research 59:1540–1544
    [Google Scholar]
  26. Meulenberg J. J., Petersen-den Besten A. 1996; Identification and characterization of a sixth structural protein of Lelystad virus: the glycoprotein GP2 encoded by ORF2 is incorporated in virus particles. Virology 225:44–51
    [Google Scholar]
  27. Meulenberg J. J. M., Hulst M. M., De Meijer E. J., Moonen P. L. J. M., Petersen-den Besten A., De Kluyver E. P., Wensvoort G., Moormann R. J. M. 1993; Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology 192:62–72
    [Google Scholar]
  28. Meulenberg J. J. M., Petersen-den Besten A., De Kluyver E. P., Moormann R. J. M., Schaaper W. M. M., Wensvoort G. 1995; Characterization of proteins encoded by ORFs 2 to 7 of Lelystad virus. Virology 206:155–163
    [Google Scholar]
  29. Meulenberg J. J. M., van Nieuwstadt A. P., van Essen-Zanbergen A., Langeveld J. P. M. 1997; Posttranslational processing and identification of a neutralization domain of the GP4 protein encoded by ORF4 of Lelystad virus. Journal of Virology 71:6061–6067
    [Google Scholar]
  30. Nelsen C. J., Murtaugh M. P., Faaberg K. S. 1999; Porcine reproductive and respiratory syndrome virus comparison: divergent evolution on two continents. Journal of Virology 73:270–280
    [Google Scholar]
  31. Nelson E. A., Christopher-Hennings J., Benfield D. A. 1994; Serum immune responses to the proteins of porcine reproductive and respiratory syndrome (PRRS) virus. Journal of Veterinary Diagnostic Investigation 6:410–415
    [Google Scholar]
  32. Nielsen H. S., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering 10:1–6
    [Google Scholar]
  33. Nielsen H. S., Oleksiewicz M. B., Forsberg R., Stadejek T., Bøtner A., Storgaard T. 2001; Reversion of a live porcine reproductive and respiratory syndrome virus vaccine investigated by parallel mutations. Journal of General Virology 82:1263–1272
    [Google Scholar]
  34. Oess S., Hildt E. 2000; Novel cell permeable motif derived from the PreS2-domain of hepatitis-B virus surface antigens. Gene Therapy 7:750–758
    [Google Scholar]
  35. Oleksiewicz M. B., Bøtner A., Toft P., Grubbe T., Nielsen J., Kamstrup S., Storgaard T. 2000; Emergence of porcine reproductive and respiratory syndrome virus deletion mutants: correlation with the porcine antibody response to a hypervariable site in the ORF 3 structural glycoprotein. Virology 267:135–140
    [Google Scholar]
  36. Oleksiewicz M. B., Bøtner A., Normann P. 2001a; Semen from boars infected with porcine reproductive and respiratory syndrome virus (PRRSV) contains antibodies against structural as well as nonstructural viral proteins. Veterinary Microbiology 81:109–125
    [Google Scholar]
  37. Oleksiewicz M. B., Bøtner A., Toft P., Normann P., Storgaard T. 2001b; Epitope mapping porcine reproductive and respiratory syndrome virus (PRRSV) by phage display: the nsp2 fragment of the replicase polyprotein contains a cluster of B-cell epitopes. Journal of Virology 75:3277–3290
    [Google Scholar]
  38. Pirzadeh B., Dea S. 1997; Monoclonal antibodies to the ORF5 product of porcine reproductive and respiratory syndrome virus define linear neutralizing determinants. Journal of General Virology 78:1867–1873
    [Google Scholar]
  39. Pirzadeh B., Dea S. 1998; Immune response in pigs vaccinated with plasmid DNA encoding ORF5 of porcine reproductive and respiratory syndrome virus. Journal of General Virology 79:989–999
    [Google Scholar]
  40. Rodriguez M. J., Sarraseca J., Fominaya J., Cortes E., Sanz A., Casal J. I. 2001; Identification of an immunodominant epitope in the C terminus of glycoprotein 5 of porcine reproductive and respiratory syndrome virus. Journal of General Virology 82:995–999
    [Google Scholar]
  41. Rost B. 1996; PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods in Enzymology 266:525–539
    [Google Scholar]
  42. Sigal C. T., Zhou W., Buser C. A., McLaughlin S., Resh M. D. 1994; Amino-terminal basic residues of Src mediate membrane binding through electrostatic interaction with acidic phospholipids. Proceedings of the National Academy of Sciences, USA 91:12253–12257
    [Google Scholar]
  43. Snijder E. J., Meulenberg J. J. M. 1998; The molecular biology of arteriviruses. Journal of General Virology 79:961–979
    [Google Scholar]
  44. Sonnhammer E. L. L., von Heijne G., Krogh A. 1998; A hidden Markov model for predicting transmembrane helices in protein sequences. pp 175–182 In Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology California: AAAI Press;
    [Google Scholar]
  45. Sørensen K. J., Bøtner A., Madsen E. S., Strandbygaard B., Nielsen J. 1997; Evaluation of a blocking ELISA for screening of antibodies against porcine reproductive and respiratory syndrome (PRRS) virus. Veterinary Microbiology 56:1–8
    [Google Scholar]
  46. Sørensen K. J., Strandbygaard B., Bøtner A., Madsen E. S., Nielsen J., Have P. 1998; Blocking ELISAs for the distinction between antibodies against European and American strains of porcine reproductive and respiratory syndrome virus. Veterinary Microbiology 60:169–177
    [Google Scholar]
  47. van Nieuwstadt A. P., Meulenberg J. J., van Essen-Zanbergen A., Petersen-den A., Bende R. J., Moormann R. J., Wensvoort G. 1996; Proteins encoded by open reading frames 3 and 4 of the genome of Lelystad virus ( Arteriviridae) are structural proteins of the virion. Journal of Virology 70:4767–4772
    [Google Scholar]
  48. Vranken W. F., Fant F., Budesinsky M., Borremans F. A. 2001; Conformational model for the consensus V3 loop of the envelope protein gp120 of HIV-1 in a 20% trifluoroethanol/water solution. European Journal of Biochemistry 268:2620–2628
    [Google Scholar]
  49. Weiland E., Wieczorek-Krohmer M., Kohl D., Conzelmann K. K., Weiland F. 1999; Monoclonal antibodies to the GP5 of porcine reproductive and respiratory syndrome virus are more effective in virus neutralization than monoclonal antibodies to the GP4. Veterinary Microbiology 66:171–186
    [Google Scholar]
  50. Wootton S. K., Nelson E. A., Yoo D. 1998; Antigenic structure of the nucleocapsid protein of porcine reproductive and respiratory syndrome virus. Clinical and Diagnostic Laboratory Immunology 5:773–779
    [Google Scholar]
  51. Yoon I. J., Joo H. S., Goyal S. M., Molitor T. W. 1994; A modified serum neutralization test for the detection of antibody to porcine reproductive and respiratory syndrome virus in swine sera. Journal of Veterinary Diagnostic Investigation 6:289–292
    [Google Scholar]
  52. Yoon K. J., Zimmerman J. J., McGinley M. J., Landgraf J., Frey M. L., Hill H. T., Platt K. B. 1995; Failure to consider the antigenic diversity of porcine reproductive and respiratory syndrome (PRRS) virus isolates may lead to misdiagnosis. Journal of Veterinary Diagnostic Investigation 7:386–387
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-6-1407
Loading
/content/journal/jgv/10.1099/0022-1317-83-6-1407
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error