1887

Abstract

A maximum-likelihood approach was used to analyse selection pressures acting on genes from all four serotypes of dengue virus (DEN). A number of amino acid positions were identified within the envelope (E) glycoprotein that have been subject to relatively weak positive selection in both DEN-3 and DEN-4, as well as in two of the five genotypes of DEN-2. No positive selection was detected in DEN-1. In accordance with the function of the E protein as the major antigenic determinant of DEN, the majority of these sites were located in, or near to, potential T- or B-cell epitopes. A smaller number of selected sites was located in other well-defined functional domains of the E protein, suggesting that cell tropism and virus-mediated membrane fusion may also confer fitness advantages to DEN in nature. Several positively selected amino acid substitutions were also identified in the NS2B and NS5 genes of DEN-2, although the cause of this selection is unclear, whereas the capsid, membrane and non-structural genes NS1, NS2A, NS3 and NS4 were all subject to strong functional constraints. Hence, evidence was found for localized adaptive evolution in natural isolates of DEN, revealing that selection pressures differ among serotypes, genotypes and viral proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-7-1679
2002-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/7/0831679a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-7-1679&mimeType=html&fmt=ahah

References

  1. Aaskov J. G., Geysen H. M., Mason T. J. 1989; Serologically defined linear epitopes in the envelope protein of dengue 2 (Jamaica strain 1409). Archives of Virology 105:209–221
    [Google Scholar]
  2. Armstrong P. M., Rico-Hesse R. 2002; Differential susceptibility of Aedes aegypti to infection by the American and Southeast Asian genotypes of dengue type 2 virus. Vector Borne and Zoonotic Diseases 1:159–168
    [Google Scholar]
  3. Bartholomeusz A. I., Wright P. J. 1993; Synthesis of dengue virus RNA in vitro : initiation and the involvement of proteins NS3 and NS5. Archives of Virology 128:111–121
    [Google Scholar]
  4. Biedrzycka A., Cauchi M. R., Bartholomeusz A., Gorman J. J., Wright P. J. 1987; Characterization of protease cleavage sites involved in the formation of the envelope glycoprotein and three non-structural proteins of dengue virus type 2, New Guinea C strain. Journal of General Virology 68:1317–1326
    [Google Scholar]
  5. Bush R. M., Fitch W. M., Bender C. A., Cox N. J. 1999; Positive selection on the H3 hemagglutinin gene of human influenza virus A. Molecular Biology and Evolution 16:1457–1465
    [Google Scholar]
  6. Chang G.-J. 1996; Molecular biology of dengue viruses. In Dengue and Dengue Hemorrhagic Fever pp 175–198 Edited by Gubler D. J., Kuno G. New York: CAB International;
    [Google Scholar]
  7. Diamond M. S., Edgil D., Roberts T. G., Lu B., Harris E. 2000; Infection of human cells by dengue virus is modulated by different cell types and viral strains. Journal of Virology 74:7814–7823
    [Google Scholar]
  8. Falconar A. K. I. 1999; Identification of an epitope on the dengue virus membrane (M) protein defined by cross-protective monoclonal antibodies: design of an improved epitope sequence based on common determinants present in both envelope (E and M) proteins. Archives of Virology 144:2313–2330
    [Google Scholar]
  9. Falconar A. K. I., Young P. R., Miles M. A. 1994; Precise location of sequential dengue virus subcomplex and complex B cell epitopes on the nonstructural-1 glycoprotein. Archives of Virology 137:315–326
    [Google Scholar]
  10. Falgout B., Pethel M., Zhang Y.-M., Lai C.-J. 1991; Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. Journal of Virology 65:2467–2475
    [Google Scholar]
  11. Falgout B., Miller R. H., Lai C.-J. 1993; Deletion analysis of dengue virus type 4 nonstructural protein NS2B: identification of a domain required for NS2B–NS3 protease activity. Journal of Virology 67:2034–2042
    [Google Scholar]
  12. Farci P., Shimoda A., Coiana A., Diaz G., Peddis G., Melpolder J. C., Strazzera A., Chien D. Y., Munoz S. J., Balestrieri A., Purcell R. H., Alter H. J. 2000; The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies. Science 288:339–344
    [Google Scholar]
  13. Forwood J. K., Brooks A., Briggs L. J., Xiao C. Y., Jans D. A., Vasudevan S. G. 1999; The 37-amino-acid interdomain of dengue virus NS5 protein contains a functional NLS and inhibitory CK2 site. Biochemical and Biophysical Research Communications 257:731–737
    [Google Scholar]
  14. Garcia G., Vaughn D. W., del Angel R. M. 1997; Recognition of synthetic oligopeptides from nonstructural proteins NS1 and NS3 of dengue-4 virus by sera from dengue virus-infected children. American Journal of Tropical Medicine and Hygiene 56:466–470
    [Google Scholar]
  15. Gritsun T. S., Holmes E. C., Gould E. A. 1995; Analysis of flavivirus envelope proteins reveals variable domains that reflect their antigenicity and may determine their pathogenesis. Virus Research 35:307–321
    [Google Scholar]
  16. Henchal E. A., McCown J. M., Burke D. S., Seguin M. C., Brandt W. E. 1985; Epitopic analysis of antigenic determinants on the surface of dengue-2 virions using monoclonal antibodies. American Journal of Tropical Medicine and Hygiene 34:162–169
    [Google Scholar]
  17. Henchal E. A., Henchal L. S., Thaisomboonsuk B. K. 1987; Topological mapping of unique epitopes on the dengue-2 virus NS1 protein using monoclonal antibodies. Journal of General Virology 68:845–851
    [Google Scholar]
  18. Innis B. L., Thirawuth V., Hemachudha C. 1989; Identification of continuous epitopes of the envelope glycoprotein of dengue type 2 virus. American Journal of Tropical Medicine and Hygiene 40:676–687
    [Google Scholar]
  19. Kurane I., Brinton M. A., Samson A. L., Ennis F. A. 1991; Dengue virus-specific, human CD4+CD8 cytotoxic T-cell clones: multiple patterns of virus cross-reactivity recognized by NS3-specific T-cell clones. Journal of Virology 65:1823–1828
    [Google Scholar]
  20. Kutubuddin M., Kolaskar A. S., Galande S., Gore M. M., Ghosh S. N., Banerjee K. 1991; Recognition of helper T cell epitopes in envelope (E) glycoprotein of Japanese encephalitis, West Nile and dengue viruses. Molecular Immunology 28:149–154
    [Google Scholar]
  21. Leclerc C., Dériaud E., Megret F., Briand J.-P., van Regenmortel M. H. V., Deubel V. 1993; Identification of helper T cell epitopes of dengue virus E-protein. Molecular Immunology 30:613–625
    [Google Scholar]
  22. Leitmeyer K. C., Vaughn D. W., Watts D. M., Salas R., Villalobos I., de Chacon I. V., Ramos C., Rico-Hesse R. 1999; Dengue virus structural differences that correlate with pathogenesis. Journal of Virology 73:4738–4747
    [Google Scholar]
  23. Lewis J. A., Chang G.-J., Lanciotti R. S., Kinney R. M., Mayer L. W., Trent D. W. 1993; Phylogenetic relationships of dengue-2 viruses. Virology 197:216–224
    [Google Scholar]
  24. McMinn P. C. 1997; The molecular basis of virulence of the encephalitogenic flaviviruses. Journal of General Virology 78:2711–2722
    [Google Scholar]
  25. Mandl C. W., Holzmann H., Guirakhoo F., Tuma W., Heinz F. X., Kunz C. 1988; Antigenic structure of the flavivirus envelope protein. Gemeinsame Herbsttagung 369:872
    [Google Scholar]
  26. Mandl C. W., Guirakhoo F., Holzmann H., Heinz F. X., Kunz C. 1989; Antigenic structure of the flavivirus envelope protein E at the molecular level, using tick-borne encephalitis virus as a model. Journal of Virology 63:564–571
    [Google Scholar]
  27. Megret F., Hugnot J. P., Falconar A., Gentry M. K., Morens D. M., Murray J. M., Schlesinger J. J., Wright P. J., Young P., van Regenmortel M. H. V., Deubel V. 1992; Use of recombinant fusion proteins and monoclonal antibodies to define linear and discontinuous antigenic sites on the dengue virus envelope glycoprotein. Virology 187:480–491
    [Google Scholar]
  28. Raviprakash K., Sinha M., Hayes C. G., Porter K. R. 1998; Conversion of dengue virus replicative form RNA (RF) to replicative intermediate (RI) by nonstructural proteins NS-5 and NS-3. American Journal of Tropical Medicine and Hygiene 58:90–95
    [Google Scholar]
  29. Rey F. A., Heinz F. X., Mandl C., Kunz C., Harrison S. C. 1995; The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375:291–298
    [Google Scholar]
  30. Rico-Hesse R., Harrison L. M., Nisalak A., Vaughn D. W., Kalayanarooj S., Green S., Rothman A. L., Ennis F. A. 1998; Molecular evolution of dengue type 2 virus in Thailand. American Journal of Tropical Medicine and Hygiene 58:96–101
    [Google Scholar]
  31. Roehrig J. T. 1996; Immunochemistry of dengue viruses. In Dengue and Dengue Hemorrhagic Fever pp 199–219 Edited by Gubler D. J., Kuno G. New York: CAB International;
    [Google Scholar]
  32. Roehrig J. T., Johnson A. J., Hunt A. R., Bolin R. A., Chu M. C. 1990; Antibodies to dengue 2 virus E-glycoprotein synthetic peptides identify antigenic conformation. Virology 177:668–675
    [Google Scholar]
  33. Roehrig J. T., Risi P. A., Brubaker J. R., Hunt A. R., Beaty B. J., Trent D. W., Mathews J. H. 1994; T-helper cell epitopes on the E-glycoprotein of dengue 2 Jamaica virus. Virology 198:31–38
    [Google Scholar]
  34. Roehrig J. T., Bolin R. A., Kelly R. G. 1998; Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology 246:317–328
    [Google Scholar]
  35. Sanchez I. J., Ruiz B. H. 1996; A single nucleotide change in the E protein gene of dengue virus 2 Mexican strain affects neurovirulence in mice. Journal of General Virology 77:2541–2545
    [Google Scholar]
  36. Spaulding A. C., Kurane I., Ennis F. A., Rothman A. L. 1999; Analysis of murine CD8+ T-cell clones specific for the dengue virus NS3 protein: flavivirus cross-reactivity and influence of infecting serotype. Journal of Virology 73:398–403
    [Google Scholar]
  37. Swofford D. L. 2000; PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods), version 4. Sinauer Associates. Sunderland, MA, USA:
  38. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673–4680
    [Google Scholar]
  39. Twiddy S. S., Farrar J. F., Chau N. V., Wills B., Gould E. A., Gritsun T., Lloyd G., Holmes E. C. 2002; Phylogenetic relationships and differential selection pressures among genotypes of dengue-2 virus. Virology (in press)
    [Google Scholar]
  40. Wang S., He R., Anderson R. 1999; PrM- and cell-binding domains of the dengue virus E protein. Journal of Virology 73:2547–2551
    [Google Scholar]
  41. WHO 2000 Strengthening implementation of the global strategy for dengue fever/dengue haemorrhagic fever prevention and control: report of the informal consultation (WHO Headquarters, Geneva. 18–20 October 1999 http://www.who.int/emc-documents/dengue/whocdsdenic20001c.html
    [Google Scholar]
  42. Woelk C. H., Jin L., Holmes E. C., Brown D. W. G. 2001; Immune and artificial selection in the haemagglutinin (H) glycoprotein of measles virus. Journal of General Virology 82:2463–2474
    [Google Scholar]
  43. Worobey M., Rambaut A., Holmes E. C. 1999; Widespread intra-serotype recombination in natural populations of dengue virus. Proceedings of the National Academy of Sciences, USA 96:7352–7357
    [Google Scholar]
  44. Yang Z. H. 1997; PAML: a program package for phylogenetic analysis by maximum likelihood. Computer Applications in the Biosciences 13:555–556
    [Google Scholar]
  45. Yang Z. H. 1998; Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Molecular Biology and Evolution 15:568–573
    [Google Scholar]
  46. Yang Z., Bielawski J. P. 2000; Statistical methods for detecting molecular adaptation. Trends in Ecology & Evolution 15:496–503
    [Google Scholar]
  47. Yang Z., Nielsen R., Goldman N., Pedersen A. M. K. 2000; Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449
    [Google Scholar]
  48. Zanotto P. M., Gould E. A., Gao G. F., Harvey P. H., Holmes E. C. 1996; Population dynamics of flaviviruses revealed by molecular phylogenies. Proceedings of the National Academy of Sciences, USA 93:548–553
    [Google Scholar]
  49. Zanotto P. M., Kallas E. G., de Souza R. F., Holmes E. C. 1999; Genealogical evidence for positive selection in the nef gene of HIV-1. Genetics 153:1077–1089
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-7-1679
Loading
/content/journal/jgv/10.1099/0022-1317-83-7-1679
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error