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Marine molluscs, like all living organisms, are constantly exposed to viruses and have evolved

efficient antiviral defences. We review here recent developments in molluscan antiviral immunity

against viruses belonging to the order Herpesvirales. Emerging results suggest an interferon-like

response and autophagy are involved in the antiviral defence of bivalves to viral infection. Multi-

functional plasma proteins from gastropods and bivalves have been identified to have broad-

spectrum antiviral activity against mammalian viruses. The antiviral defences present in molluscs can

be enhanced by genetic selection, as shown by the presence of oyster strains specifically resistant

to ostreid herpesvirus type 1. Whether varying amounts or different isoforms of these antiviral plasma

proteins contributes to genetic resistance is worthy of further research. Other evolutionarily conserved

antiviral mechanisms, such as RNA interference and apoptosis, still need further characterization.

Introduction

Molluscs do not encode a classical acquired immune
system (Bachère et al., 1995; Loker et al., 2004) yet thrive
in the ocean, which is rich in viruses (Suttle, 2007). Mol-
luscs occupy a wide variety of ecological niches in the
ocean and some species are colonial, filter-feeders and
can live for up to 400 years (Philipp & Abele, 2010). Mol-
luscs could not be ecologically successful without effective
innate responses to protect themselves from fast-evolving
pathogens, such as viruses (Loker et al., 2004).

Viruses infecting marine molluscs have been interpreted
as members of the families Herpesviridae, Iridoviridae,
Papovaviridae, Togaviridae, Reoviridae, Birnaviridae and
Picornaviridae (reviewed by Renault & Novoa, 2004).
Some of these molluscan viruses threaten the commercial
viability of aquaculture enterprises (Segarra et al., 2014a)
and others have had a detrimental impact on wild fisheries
(Crane et al., 2013). Very few studies have investigated the
antiviral responses of molluscs (reviewed by Loker et al.,
2004). Routine techniques used in virology and immunobi-
ology are complicated by the absence of continuous cell
lines for marine molluscs (Yoshino et al., 2013) and the
fact that marine viruses cannot be propagated in the fresh-
water pond snail (Biomphalaria glabrata) embryonic cell
line (Bge) or in molluscan primary cell cultures (further
details in Garcia et al., 2011). Therefore, knowledge gaps
remain regarding the antiviral responses of molluscs. Pre-
viously, researchers had a tendency to fill knowledge gaps
in molluscan antiviral immunity by using what is known

about other invertebrate phyla, such as arthropods (Droso-
phila and Penaeus). Emerging research now suggests that
the antiviral response of molluscs is different to model
invertebrate species (Loker et al., 2004).

Here, we review the antiviral responses of molluscs against
viruses belonging to Herpesvirales. We focus on the Herpes-
virales order of viruses because few other studies exist regard-
ing mollusc responses to other diseases of potential viral
aetiology (Martı́n-Gómez et al., 2014a, b). We therefore
start by describing viruses belonging to the family Malaco-
herpesviridae within the order Herpesvirales. We discuss
recent studies conducted on bivalves and gastropods and
highlight similarities in their antiviral responses against
viruses. The picture that emerges from these studies is that
an interferon-like response and autophagy appear to be
important antiviral responses of molluscs, but other evolu-
tionarily conserved or novel antiviral responses for inhibit-
ing viral infection and replication should not be overlooked.

Herpesvirus infections of marine molluscs

Viruses belonging to the family Malacoherpesviridae from
the order Herpesvirales are known to cause disease in
marine molluscs (Davison et al., 2005, 2009; Savin et al.,
2010). The intentional translocation of marine molluscs
around the world for aquaculture is considered to be the
main reason for the geographical expansion of the family
Malacoherpesviridae (Breener et al., 2014; Mineur et al.,
2015). Marine molluscs farmed outside their natural
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distribution range are also naïve to viruses endemic to that
region. Not surprisingly, viruses belonging to the Malaco-
herpesviridae have caused disastrous economic conse-
quences for farmed and wild fisheries (Hooper et al.,
2007; Mineur et al., 2015; Segarra et al., 2010). Up to
now, the family Malacoherpesviridae incorporates two
groups of viruses that are described in further detail below.

Ostreid herpesvirus 1 (OsHV-1)

OsHV-1 belongs to the genus Ostreavirus from the family
Malacoherpesviridae (Davison et al., 2009). The first descrip-
tion of herpes-like virus associated with mollusc mortality
was reported in 1972 in the Eastern oyster (Crassostrea virgi-
nica) from the east coast of the USA (Farley et al., 1972).
Since this time, herpes-like viruses have been described in
other species of oyster (Burge et al., 2006; Hine et al., 1992;
Renault et al., 1994), scallops (Arzul et al., 2001a; Ren et al.,
2013) and clams (Renault et al., 2001). The virus has been pur-
ified from naturally infected Crassostrea gigas larvae (Le Deuff
& Renault, 1999) and its genome entirely sequenced (Davison
et al., 2005). Several genotypes of OsHV-1 have been detected
by conventional PCR, targeting a specific area of the genome
(Arzul et al., 2001b; Martenot et al., 2011; Segarra et al.,
2010). The reference (OsHV-1 ref) and variant (OsHV-1
var.) genotypes were associated with sporadic mortality
events of Crassostrea gigas larvae and spat (oysters less than
1 year old) (Garcia et al., 2011). From 2008, Crassostrea gigas
mortalities greatly increased on the French coast and spread
to other European countries (Renault et al., 2012). These
high mortalities were linked to the emergence of a newly
described OsHV-1 genotype labelled mVar (Segarra et al.,
2010). In addition, mortality events of Crassostrea gigas were
reported in 2010 from New Zealand and Australia in associ-
ation with a virus closely related to mVar (Jenkins et al.,
2013; Keeling et al., 2014). Numerous genomic and proteomic
studies investigating the host–pathogen interactions of Cras-
sostrea gigas and OsHV-1 have been undertaken (Corporeau
et al., 2014; Du et al., 2013; Fleury & Huvet, 2012; Green &
Montagnani, 2013; Jouaux et al., 2013; Normand et al., 2014;
Renault et al., 2011; Segarra et al., 2014a, b, c; Tamayo et al.,
2014).

Acute viral necrosis virus (AVNV) is the causative agent of
a serious disease of Chinese scallops, Chlamys farreri (Ren
et al., 2013). The complete genome sequence of AVNV
indicates it’s a variant of OsHV-1 (Ren et al., 2013).
Since the 1980s, AVNV has caused disease events in
summer of farmed Chlamys farreri in China, with mortality
reaching w90 % within 5–8 days after first appearance (Fu
et al., 2005). Studies investigating the physiological and
immunological responses of Chlamys farreri infected with
AVNV have been undertaken (Chen et al., 2011, 2013,
2014; Tang et al., 2010; Xing et al., 2008).

Abalone herpesvirus (AbHV)

The first description of AbHV, associated with high mortality
of abalone, was reported in 2005 in farmed abalone Haliotis

diversicolor supertexta from Taiwan (Chang et al., 2005). His-
topathology of moribund abalone indicated the nervous
system was the target tissue and electron microscopic exam-
ination demonstrated herpes-like viral particles within the
degenerated cerebral ganglion cells (Chang et al., 2005).
AbHV was likely to occur outside of Taiwan with pre-exist-
ing reports of amyotrophia and mortality of Japanese black
abalone (Haliotis discus discus) associated with a virus-like
particle (Nakatsugawa et al., 1999; Otsu & Sasaki, 1997).
In late 2005 there was the emergence of AbHV in farmed
and wild abalone populations in Victoria, Australia
(Hooper et al., 2007). This outbreak of AbHV was linked
to the collection of abalone to be used as broodstock and
the translocation of abalone between farms to exchange gen-
etics for breeding programmes or for production purposes
(Hooper et al., 2007). Purification of herpesvirus-like par-
ticles and partial genome sequencing confirmed AbHV
forms part of an ancient clade with its nearest relatives
being herpesvirus belonging to OsHV-1 (Savin et al.,
2010). A single study investigating the immunological
response of hybrid abalone (Haliotis laevigata |
Haliotis rubra) to AbHV has been undertaken (Dang et al.,
2013).

Innate antiviral responses of marine molluscs

Antiviral immunity in molluscs is poorly understood com-
pared with that of other invertebrate phyla, with only a few
studies conducted in bivalves (mostly focused onCrassostrea
gigas and Chlamys farreri), limited work in gastropods
(Haliotis spp.) and no studies of cephalopods. Studies inves-
tigating the antiviral response of molluscs have mainly
focused on identifying antiviral compounds, measuring
immune enzyme activity or characterizing the transcrip-
tional response to OsHV-1 infection (Chen et al., 2013;
Dang et al., 2011, 2013; Fleury &Huvet, 2012; Green &Mon-
tagnani, 2013;Green et al., 2014c; Jouaux et al., 2013;Moreau
et al., 2015; Normand et al., 2014; Olicard et al., 2005a, b;
Renault et al., 2011; Rosani et al., 2014; Segarra et al.,
2014a, c). These studies suggest that the molluscan antiviral
response has similarities to the vertebrate interferon pathway
(Green & Montagnani, 2013). However, this interpretation
may be biased by the reliance on transcriptional studies to
characterize antiviral responses. Bioinformatic analysis
of the oyster genome reveals molluscs also have the
potential to control viral infections using RNA interference
(RNAi) and programmed cell death (PCD) responses (Fig.
1).We thereforemake comparisonswith other phyla to high-
light potential knowledge gaps in our understanding of mol-
lusc antiviral immunity.

Interferon-like response

The interferon system is crucial for resistance of mammals
and other vertebrates to viral infection (Randall & Good-
bourn, 2008). Vertebrate cells produce interferons upon
recognition of virus-derived nucleic acids, such as dsRNA
(Randall & Goodbourn, 2008). Interferons are secreted
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proteins that induce an antiviral state by binding to distinct
receptors present on all nucleated cells (Biron & Sen, 2001).
Receptor engagement activates signal transduction via
the Jak-STAT pathway, leading to the transcription of hun-
dreds of interferon stimulated genes (ISGs) (Robertsen,
2006; 2008). The products of these ISGs exert numerous
antiviral effector functions (Schoggins & Rice, 2011). The
interferon response has traditionally been thought to be a
vertebrate innovation because the genomes of model
invertebrates (i.e. Drosophila and mosquitoes) do not
encode interferon or its major effectors (Loker et al.,
2004; Robalino et al., 2004). Subsequently, it has been
demonstrated that arthropods have a transcriptional
response to viral infection that signals through a secreted
peptide, vago, that induces the expression of antiviral
effectors via the Jak-STAT pathway (Deddouche et al.,
2008; Paradkar et al., 2012, 2014). Several important con-
trasts exist between the vertebrate interferon response
and the arthropod transcriptional response to viral
infection. Drosophila and mosquitoes cannot distinguish
non-specific nucleic acids to activate vago expression, but
instead rely on a component of the RNAi-mediated
antiviral response, dicer-2, to recognize replicating viruses
and activate vago via a signalling pathway involving
TRAF and Rel2 (Deddouche et al., 2008; Paradkar et al.,
2014). Secondly, antiviral effectors that are induced by
vago (i.e. CG12780, vir1 and CG9080) have no resemblance
to vertebrate ISGs (Dostert et al., 2005).

Although no interferon–cytokine homologue has yet been
identified in molluscs, oysters (Crassostrea gigas) have a
transcriptional response to viral infection (OsHV-1) that
closely resembles the vertebrate interferon response. Firstly,
the immune system of Crassostrea gigas can recognize non-
specific nucleic acids (i.e. poly I : C) to induce an antiviral
response that inhibits subsequent infection with OsHV-1
(Green & Montagnani, 2013). This response was antiviral
because inducing an anti-pathogen response by injecting
Crassostrea gigas with heat-killed Vibrio bacteria provided
no protection against subsequent OsHV-1 infection
(Green & Montagnani, 2013). Several evolutionary con-
served nucleic acid sensors and their downstream signalling
molecules, including Toll-like receptors (TLRs), RIG-like
receptors (RLRs), interferon regulatory factors (IRFs) and
stimulator of interferon (STING), have been identified in
the Crassostrea gigas genome (Figs 2 and 3, Table 1). Sec-
ondly, the Crassostrea gigas genome encodes many classic
ISGs (Table 1), such as 29-5-oligoadenylate synthetase
(OAS) (Fig. 4, GenBank accession nos EKC21335 &
EKC26578), Mx protein (GenBank no. KC28205), viperin
(GenBank no. EKC28205) and ADAR-L (GenBank no.
EKC20855) (Zhang et al., 2012). Finally, OsHV-1 infection
of C. gigas coincides with elevated mRNA levels of many
genes involved in the interferon response, such as virus rec-
ognition receptors (i.e. TLRs and RLRs), signal transducers
(i.e. MyD88, STING, SOC), transcription factors (IRFs,
NF-kB) and antiviral effectors (i.e. viperin, IFI44,
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ADAR-L, TRIM, etc.) (see Table 1 and references within).
Many of these genes are also induced in the gill, mantle and
hemocyte tissue of Crassostrea gigas injected with poly I : C
(Green et al., 2014a, b; Green & Montagnani, 2013). Col-
lectively, these studies have demonstrated the oyster
can recognize virus-associated molecular patterns to
induce a systemic transcriptional response that is capable

of controlling OsHV-1 infection and replication. Future
research should attempt to identify an oyster interferon
cytokine because there is evidence that vertebrate interfer-
ons can elicit an antiviral response in pearl oysters
(Pinctada fucata) (Miyazaki et al., 2000) and can phosphor-
ylate STAT-like proteins in the mussel, Mytilus galloprovin-
cialis (Canesi et al., 2003).
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RNA interference (RNAi)

dsRNA is an important regulator of gene expression in ani-
mals (Meister & Tuschl, 2004; Randall & Goodbourn,
2008). It can induce a transcriptional response (i.e. inter-
feron-pathway) and it can also regulate different types of
post-transcriptional gene processes that are collectively
referred to as RNAi (Meister & Tuschl, 2004). RNAi is
highly evolutionarily conserved process triggered by
dsRNA precursors that vary in length and origin (Jeang,

2012; Kemp & Imler, 2009; Wang et al., 2010). According
to their origin or function, three types of naturally occur-
ring small RNA have been characterized: (i) short interfer-
ing RNAs (siRNAs) are generated from dsRNA either
derived from exogenous sources such as viruses or encoded
by the cell genome, (ii) microRNAs (miRNAs) are gener-
ated from cell-encoded transcripts and ultimately function
to regulate gene expression at the level of translation, and
(iii) PIWI-interacting RNAs (piRNAs) are cell-encoded

Table 1. Key antiviral genes identified in the Crassostrea gigas genome involved in virus recognition receptors, antiviral signalling
molecules, antiviral effectors and key components in PCD and RNAi

The percentage amino acid identity and E-value of these Crassostrea gigas genes to antiviral genes from Homo sapiens is provided. References refer to

previous studies that have shown these Crassostrea gigas genes are differentially expressed in response to OsHV-1 infection.

Gene C. gigas GenBank no. H. sapiens GenBank no. E-value aa identity (%) OsHV-1 refs

Virus recognition

TLR-3 EKC35956 NP_003256 3.00e246 26 Fleury & Huvet (2012)

RLH EKC38303 O95786 3.00e2108 34 He et al. (2015)

RLH EKC38304 O95786 7.00e269 35 He et al. (2015)

HMGB EKC40290 AAI41845 4.00e253 54

cGAS EKC29902 NP_612450 1.00e218 29

Antiviral signalling

IRF-8 EKC26205 NP_002154 1.00e247 31 Rosani et al. (2014)

IRF-2 EKC43155 NP_002190 5.00e232 50 Green & Montagnani (2013)

STING EKC29965 NP_938023 2.00e240 31

SOC-1 EKC24772 NP_003868 3.00e231 41 Rosani et al. (2014)

JAK EKC41693 NP_004422 3.00e247 37 He et al. (2015)

STAT EKC39332 NP_001171551 2.00e210 36 He et al. (2015)

Caveolin-1 EKC31086 NP_001744 2.00e229 40 He et al. (2015)

Antiviral effectors

OAS EKC21335 BAB18647 1.00e237 29

OAS EKC26578 BAB18647 1.00e219 34

Mx EKC33820 NP_001138397 1.00e254 33

Viperin EKC28205 AAL50053 3.00e2163 63 Rosani et al. (2014)

ADAR-L EKC20855 NP_056655 1.00e2145 47 Rosani et al. (2014)

IFI44 FJ440108 NP_006811 5.00e–39 47 Renault et al. (2011)

RNAi

Dicer-2 EKC26346 NP_085124 0 43 He et al. (2015)

TRBP XP_011456094 NP_004169 3.00e249 36

AGO-2 EKC19600 NP_036286 0 73

AGO-2 EKC35067 NP_036286 0 64

Apoptosis

TNF EKC35160 NP_003801 5.00e213 32 He et al. (2015)

TNF EKC39243 NP_003801 2.00e214 27 He et al. (2015)

TNF ADX31292 NP_003801 1.00e213 23 He et al. (2015)

TNFR1 EKC38398 NP_001241 5.00e215 31

SODD EKC42633 NP_004865 2.00e215 39

ADAMS-17 EKC21816 AAB51514 1.00e278 29

Autophagy

Beclin EKC28450 NP_003757 0 62 Moreau et al. (2015)

P13K EKC39750 NP_002636 0 45

Akt EKC33169 AAH20479 1.00e2115 45

mTOR EKC29347 NP_004949 0 63

ATG1 (ULK1) EKC18065 NP_055498 4.00e2117 47 Moreau et al. (2015)

ATG8 (LC3) EKC40439 NP_115903 2.00e261 75 Moreau et al. (2015)

ATG18 (WIPI1) EKC39143 NP_057087 0 69
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and do not require processing to function in the epigenetic
control of genomic elements in the germ-line (reviewed by
Kingsolver et al., 2013). We focus on reviewing what is
known about the siRNA and miRNA pathways in molluscs
because these two pathways are well characterized in the
antiviral response of arthropods and mammals. The
siRNA-pathway is recognized as an important defence
mechanism in arthropods against RNA and DNA viruses
(Blair, 2011; Kemp & Imler, 2009; Kemp et al., 2013),
whereas, the rarity of siRNAi-pathways in the antiviral
immunity of vertebrate cells against herpesviruses is now
thought to be because this group of vertebrate viruses
have been tightly selected not to maintain siRNA producing
sequences (Jeang, 2012). The miRNA-pathway is involved
in regulating many cellular processes, including innate
immune responses of mammalian cells (Pauley & Chan,
2008). The miRNA-pathway mediates host gene expression
by blocking translation through incomplete binding with
39-UTR of a target gene or by directing degradation of a
target mRNA (Chen et al., 2014). Analysis of small
expression profiles of virus infected mammalian cells has
also revealed several herpesviruses express viral-miRNAs
to inhibit the host’s antiviral innate immune response
(Cullen, 2011). The role of miRNAs in viral pathogenesis
of arthropod cells is not clear (Kingsolver et al., 2013).

The RNAi system is clearly functional in molluscs, with
several researchers utilizing RNAi to investigate gene

expression on defence proteins, gonad maturation and
shell formation (reviewed by Owens & Malham, 2015).
However, the importance of the siRNA- and miRNA-path-
ways in the antiviral defence of mollusc cells is unknown.
Differences exist between the number of RNAi-related
enzymes encoded by genomes of molluscs and other ani-
mals. The oyster genome encodes a single orthologue of
both dicer and the RISC loading complex subunit
(TRBP), but only two argonaute proteins (Table 1). Insects
have two dicer proteins; dicer-1 is required for the pro-
duction of miRNA, whereas dicer-2 is required for proces-
sing dsRNA to generate siRNA (Kingsolver et al., 2013).
In contrast, mammalian cells have only one dicer enzyme
that is utilized by both the siRNA and miRNA pathways
(de Jong et al., 2009) but they have four argonaute proteins
(AGO1–4), with only AGO2 known to function in the
siRNA and miRNA pathways (Pauley & Chan, 2008). The
only study covering an aspect of molluscan RNAi-mediated
antiviral immunity was recently performed by Chen et al.
(2014), where Chlamys farreri miRNAs and miRNA
expression profiles in response to AVNV infection was ana-
lysed by deep sequencing technology. Sequence homology
searches of Chlamys farreri miRNAs against the Chlamys
farreri expressed sequence tag (EST) database revealed scal-
lop miRNAsmay target immune- and stress-related genes for
post-transcriptional regulation (Chen et al., 2014). Further
research is now required to determine if these scallop
miRNAs suppress translation of immune- and stress- related
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genes. In their study, Chen et al. (2014) did not state
whether they observed AVNV-derived siRNAs (vsiRNAs) in
their dataset. This is despite the fact that the entire AVNV
genome is sequenced (Ren et al., 2013) and may have
provided evidence that the RNAi-mediated antiviral response
is functional in molluscs.

Programmed cell death (PCD)

Apoptosis and autophagy are forms of PCD. PCD is a funda-
mental cellular response to prevent viral replication and pro-
tein synthesis in virus-infected cells (Quinlan, 1999). The
processes of apoptosis and autophagy are extensively
described for mammalian and arthropod cells (Degterev &
Yuan, 2008; Lamiable & Imler, 2014). Genes encoding the
apoptotic machinery are highly conserved in molluscs
(Zhang et al., 2011), but the role of the apoptosis system in
molluscan immunity has received little attention (Zhang
et al., 2011). The large number of apoptosis inhibitors
encoded in the genomes of OsHV-1, AVNV and AbHV
(Davison et al., 2005; Ren et al., 2013; Savin et al., 2010)
implies apoptosis may represent an important antiviral
response of molluscs and warrants further investigation.

Autophagy is another highly evolutionally conserved pro-
cess of PCD (He & Klionsky, 2009). Autophagy has a
role in cellular homeostasis and is also an innate immune
mechanism that can selectively target intracellular patho-
gens and cytosolic proteins for enzymatic degradation
(He & Klionsky, 2009; Richetta & Faure, 2013; Sumpter
& Levine, 2010). Protein kinase R (PKR) is a vertebrate
interferon stimulated gene that can trigger autophagy
upon dsRNA binding through a pathway involving eIF2a
(reviewed by Richetta & Faure, 2013). Vertebrate cells
can utilize this PKR and eIF2a-dependent autophagy path-
way to degrade both herpes simplex virus type 1 (HSV-1)
virions and HSV-1 proteins (Tallóczy et al., 2006). The
importance of autophagy is cell-type dependent, with
neuron cells, but not mitotic cells, relying on autophagy
in HSV-1 defence (Yordy & Iwasaki, 2013).
An intracellular DNA sensor must also be able to provoke
autophagy in response to herpesvirus infection (McFarlane
et al., 2011). Human cytomegalovirus (HCMV) and HSV-1
induced autophagy in human fibroblasts and this response
was retained when cells were infected with UV-irradiated
HCMV (McFarlane et al., 2011). Other pathogen sensors
(such as TLR3, TLR4, TLR7, TLR8 and NOD2) are also
known to induce autophagy upon binding with their
specific ligand, via a MyD88 independent pathway
(reviewed by Richetta & Faure, 2013). Autophagy is also
an antiviral mechanism utilized by arthropods (Nakamoto
et al., 2012). In Drosophila, Toll-7 recognizes vesicular
stomatitis virus (VSV) at the plasma membrane and
induces antiviral autophagy via an NF-kB-independent
pathway (Nakamoto et al., 2012).

Autophagy appears to be an important antiviral response of
oysters (Moreau et al., 2015). OsHV-1 induces autophagy in
mantle tissue of Crassostrea gigas and survival assays using a
known inhibitor (NH4Cl) of autophagy demonstrated this

antiviral response had a protective role in Crassostrea gigas
against OsHV-1 (Moreau et al., 2015). Furthermore, micro-
array-based gene expression studies have observed elevated
expression of genes associated with autophagy in Crassostrea
gigas undergoing a mass mortality event in California, USA
(Moreau et al., 2015). Chaney & Gracey (2011) did not
investigate the cause of mortality, but OsHV-1 is often
associated with oyster mortality in California (Burge et al.,
2006). Future research should identify which OsHV-1
ligand induces autophagy and whether autophagy targets
the OsHV-1 virion or an essential OsHV-1 protein.

Antiviral compounds

The occurrence and function of antimicrobial peptides
(AMPs) in marine bivalves has been well studied in relation
to anti-bacterial and anti-fungal immunity (reviewed by
Bachère et al., 2015; Schmitt et al., 2010). Less is known
regarding the activity of AMPs against molluscan viruses.
Investigations into the antiviral activity of molluscan
AMPs and tissue homogenates is hampered by the lack of
continuous cell lines from marine molluscs (Yoshino
et al., 2013) and the fact that OsHV-1 cannot be cultured
in primary cell cultures from bivalves (details in Garcia
et al., 2011). Numerous studies have therefore utilized a
heterologous model involving HSV-1 and African green
monkey kidney (Vero) cells to identify antiviral com-
pounds in tissue homogenates from commercially import-
ant bivalves (Carriel-Gomes et al., 2006; Defer et al., 2009;
Green et al., 2014c; Olicard et al., 2005a, b; Segarra et al.,
2014a; Zeng et al., 2008) and gastropods (Dang et al.,
2011; Zanjani et al., 2014).

Haemocyanins and haemocyanin-derived peptides from
marine and terrestrial gastropods have potent anti-herpes-
virus activity (Nesterova et al., 2011; Zagorodnya et al.,
2011; Zanjani et al., 2014). The primary function of
haemocyanins is the transport of molecular oxygen to
respiring tissues (Coates & Nairn, 2014; Zanjani et al.,
2014), but their contribution to innate immunity is often
overlooked (Coates & Nairn, 2014). Haemocyanins are
copper containing glycoproteins and a major haemolymph
component, approximately 50 % to w90 %, of some mol-
lusc species (Coates & Nairn, 2014). Abalone haemocyanin
inhibits HSV-1 infection of Vero cells, presumably by
blocking viral entry (Dang et al., 2011; Zanjani et al.,
2014). The anti-HSV-1 activity of abalone plasma does
not increase above baseline levels in response to
experimental infection with AbHV (Dang et al., 2013). How-
ever, the anti-HSV-1 activity of abalone plasma appears to be
influenced by temperature with higher anti-HSV-1 activity
occurring in summer than in winter (Dang et al., 2012).

The genomes of pteriomorph bivalve genera, such as Cras-
sostrea, Mytilus and Argopecten, do not encode a haemo-
cyanin gene (Lieb & Todt, 2008). Yet, their plasma also
has anti-HSV-1 activity (Carriel-Gomes et al., 2006; Defer
et al., 2009; Olicard et al., 2005b). Anti-HSV-1 activity of
Crassostrea gigas haemolymph corresponds to a copper
containing glycoprotein, termed cavortin (GenBank no.
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AY551094) that exerts its antiviral activity by interfering
with virus replication (Green et al., 2014c). Cavortin is
the major plasma protein in the oyster and the protein
has an extracellular superoxide dismutase domain (Gon-
zalez et al., 2005; Itoh et al., 2011). The anti-HSV-1 activity
of oyster haemolymph from juveniles and adults is similar
(Green et al., 2014b) and varies throughout the year, with
adult oysters having higher activity during the summer/
autumn period compared with winter (Olicard et al.,
2005a). The anti-HSV-1 activity of oyster hemolymph
could not induced by injecting oysters with poly I : C
(Green et al., 2014b).

Genetics and physiology

Genetics, host physiology and the environment are all
important determinants of mollusc survival to viral infec-
tion. Survival of Crassostrea gigas to OsHV-1 is positively
correlated with oyster age and size (Dégremont, 2013;
Paul-Pont et al., 2014; Peeler et al., 2012; Pernet et al.,
2012). Water temperature is also a factor in the expression
of disease caused by OsHV-1 infection. The water tempera-
tures must exceed 16 uC for OsHV-1 to cause mortality of
juvenile Crassostrea gigas (Petton et al., 2013) and mortality
of Chlamys farreri to AVNV occurs in late summer (Fu et al.,
2005). It is unknown how host physiology and the environ-
ment influences disease expression of abalone to AbHV.

Oyster age and water temperature is also known to influ-
ence antiviral gene expression in Crassostrea gigas stimu-
lated with poly I : C (Green et al., 2014b). At 22 uC,
juvenile oysters express antiviral genes earlier and to a
higher magnitude compared with adult oysters.
In contrast, water temperature of 12 uC delayed antiviral
gene expression in adult oysters and inhibited the antiviral
response of juvenile oysters (Green et al., 2014b). Many of
these antiviral genes are involved in processes that prevent
cell transcription and translation and it should be deter-
mined whether the vigorous antiviral response of juvenile
oysters at 22 uC is contributing to an immune-mediated
disorder leading to higher mortality. Intervention studies
on commercial oyster farms have demonstrated farm hus-
bandry, such as raising the intertidal growing height, can
reduce mortality of Crassostrea gigas by primarily reducing
exposure risk to OsHV-1 (Paul-Pont et al., 2013). These
farm husbandry practices may also provide additional pro-
tection by reducing the available feeding time and thereby,
limiting energy allocation to immunity.

The antiviral defences present in molluscs can be enhanced
by genetic selection (Dégremont, 2011, 2013; Sauvage et al.,
2010). Segarra et al. (2014c) compared the susceptibility of
bi-parental C. gigas families to OsHV-1 and confirmed that
susceptibility to OsHV-1 infection had a significant genetic
component. Viral DNA was detected earlier and the overall
amount of viral DNA was higher for a low surviving oyster
family compared with a high surviving family (Segarra
et al., 2014c). The high surviving family presumably controls
OsHV-1 replication from exceeding the viral DNA threshold

[8.8|103 copies (mg of tissue)21] for mortality to occur
(Oden et al., 2011). Similar observations are reported for
abalone with a proportion of the population testing PCR-
positive for AbHV (low amounts of viral DNA), but display-
ing no clinical signs of disease (Crane et al., 2013; Dang et al.,
2013). Selective breeding programmes would benefit from
identifying the genetic mechanism(s) utilized by resistant
molluscs for maintaining viral loads below the mortality
threshold. A good starting point would be the antiviral
plasma proteins (haemocyanin and cavortin) that are
known to interfere with mammalian virus replication
(Dang et al., 2011; Green et al., 2014c; Olicard et al.,
2005b). Normand et al. (2014) concluded expression levels
of superoxide dismutase metalloenzymes (i.e. cavortin)
may partly determine resistance of Crassostrea gigas to
OsHV-1 associated mortality. Plasma antiviral activity is a
trait under genetic control in populations of Crassostrea
gigas (Green et al., 2014c) and abalone (unpublished data).

Conclusions

Compared with only a few years ago, remarkable progress
has been made on characterizing the antiviral mechanisms
in molluscs. Recent findings indicate that many features of
the inducible antiviral response of molluscs are shared with
the mammalian interferon pathway. Laboratory and field
studies have also highlighted the importance of autophagy
in the oyster’s antiviral response. The contribution of other
evolutionarily conserved antiviral mechanisms, such as
RNAi and apoptosis, will no doubt be evaluated once
appropriate methodologies and tools become available to
study them. Of note, genetic selection of Crassostrea gigas
to OsHV-1 has led to the development of susceptible and
resistant family lines. In consequence, genetic screens
between families with contrasted survival to OsHV-1 infec-
tion hold great promise in identifying the major antiviral
pathways in molluscs.
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Martenot, C., Oden, E., Travaillé, E., Malas, J. P. & Houssin, M.
(2011). Detection of different variants of Ostreid Herpesvirus 1 in
the Pacific oyster, Crassostrea gigas between 2008 and 2010. Virus
Res 160, 25–31.
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