1887

Abstract

The polymerase (P) and surface (S) genes of hepatitis B virus (HBV) show the longest gene overlap in animal viruses. Gene overlaps originate by the overprinting of a novel frame onto an ancestral pre-existing frame. Identifying which frame is ancestral and which frame is (the genealogy of the overlap) is an appealing topic. However, the P/S overlap of HBV is an intriguing paradox, because both genes are indispensable for virus survival. Thus, the hypothesis of a primordial virus without the surface protein or without the polymerase makes no biological sense. With the aim to determine the genealogy of the overlap, the codon usage of the overlapping frames P and S was compared to that of the non-overlapping region. It was found that the overlap of human HBV had two patterns of codon usage. One was localized in the 5′ one-third of the overlap and the other in the 3′ two-thirds. By extending the analysis to non-human HBVs, it was found that this feature occurred in all hepadnaviruses. Under the assumption that the ancestral frame has a codon usage significantly closer to that of the non-overlapping region than the frame, the ancestral frames in the 5′ and 3′ region of the overlap could be predicted. They were, respectively, frame S and frame P. These results suggest that the spacer domain of the polymerase and the S domain of the surface protein originated by overprinting. They support a modular evolution hypothesis for the origin of the overlap.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000307
2015-12-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/12/3577.html?itemId=/content/journal/jgv/10.1099/jgv.0.000307&mimeType=html&fmt=ahah

References

  1. Arauz-Ruiz P., Norder H., Robertson B. H., Magnius L. O. 2002; Genotype H: a new Amerindian genotype of hepatitis B virus revealed in Central America. J Gen Virol 83:2059–2073 [View Article][PubMed]
    [Google Scholar]
  2. Bartenschlager R., Schaller H. 1988; The amino-terminal domain of the hepadnaviral P-gene encodes the terminal protein (genome-linked protein) believed to prime reverse transcription. EMBO J 7:4185–4192[PubMed]
    [Google Scholar]
  3. Blanchet M., Sureau C. 2007; Infectivity determinants of the hepatitis B virus pre-S domain are confined to the N-terminal 75 amino acid residues. J Virol 81:5841–5849 [View Article][PubMed]
    [Google Scholar]
  4. Blitz L., Pujol F. H., Swenson P. D., Porto L., Atencio R., Araujo M., Costa L., Monsalve D. C., Torres J. R., other authors. 1998; Antigenic diversity of hepatitis B virus strains of genotype F in Amerindians and other population groups from Venezuela. J Clin Microbiol 36:648–651[PubMed]
    [Google Scholar]
  5. Botstein D. 1980; A theory of modular evolution for bacteriophages. Ann N Y Acad Sci 354:484–491 [View Article][PubMed]
    [Google Scholar]
  6. Campo D. S., Dimitrova Z., Lara J., Purdy M., Thai H., Ramachandran S., Ganova-Raeva L., Zhai X., Forbi J. C., other authors. 2011; Coordinated evolution of the hepatitis B virus polymerase. In Silico Biol 11:175–182[PubMed]
    [Google Scholar]
  7. Cao F., Jones S., Li W., Cheng X., Hu Y., Hu J., Tavis J. E. 2014; Sequences in the terminal protein and reverse transcriptase domains of the hepatitis B virus polymerase contribute to RNA binding and encapsidation. J Viral Hepat 21:882–893 [View Article][PubMed]
    [Google Scholar]
  8. Cardon L. R., Burge C., Clayton D. A., Karlin S. 1994; Pervasive CpG suppression in animal mitochondrial genomes. Proc Natl Acad Sci U S A 91:3799–3803 [View Article][PubMed]
    [Google Scholar]
  9. Carter J. J., Daugherty M. D., Qi X., Bheda-Malge A., Wipf G. C., Robinson K., Roman A., Malik H. S., Galloway D. A. 2013; Identification of an overprinting gene in Merkel cell polyomavirus provides evolutionary insight into the birth of viral genes. Proc Natl Acad Sci U S A 110:12744–12749 [View Article][PubMed]
    [Google Scholar]
  10. Chang L. J., Hirsch R. C., Ganem D., Varmus H. E. 1990; Effects of insertional and point mutations on the functions of the duck hepatitis B virus polymerase. J Virol 64:5553–5558[PubMed]
    [Google Scholar]
  11. Chen P., Gan Y., Han N., Fang W., Li J., Zhao F., Hu K., Rayner S. 2013; Computational evolutionary analysis of the overlapped surface (S) and polymerase (P) region in hepatitis B virus indicates the spacer domain in P is crucial for survival. PLoS One 8:e60098 [View Article][PubMed]
    [Google Scholar]
  12. Coleman P. F. 2006; Detecting hepatitis B surface antigen mutants. Emerg Infect Dis 12:198–203 [View Article][PubMed]
    [Google Scholar]
  13. Colgrove R., Simon G., Ganem D. 1989; Transcriptional activation of homologous and heterologous genes by the hepatitis B virus X gene product in cells permissive for viral replication. J Virol 63:4019–4026[PubMed]
    [Google Scholar]
  14. Cooreman M. P., Leroux-Roels G., Paulij W. P. 2001; Vaccine- and hepatitis B immune globulin-induced escape mutations of hepatitis B virus surface antigen. J Biomed Sci 8:237–247 [View Article][PubMed]
    [Google Scholar]
  15. Cui J., Holmes E. C. 2012; Endogenous hepadnaviruses in the genome of the budgerigar (Melopsittacus undulatus) and the evolution of avian hepadnaviruses. J Virol 86:7688–7691 [View Article][PubMed]
    [Google Scholar]
  16. Dawson R., Trapp R. G. 2001 Basic and Clinical Biostatistics, 3rd edn. New York: McGraw-Hill;
    [Google Scholar]
  17. Fernholz D., Galle P. R., Stemler M., Brunetto M., Bonino F., Will H. 1993; Infectious hepatitis B virus variant defective in pre-S2 protein expression in a chronic carrier. Virology 194:137–148 [View Article][PubMed]
    [Google Scholar]
  18. Gibbs A. 1987; Molecular evolution of viruses; ‘trees’, ‘clocks’ and ‘modules’. J Cell Sci Suppl 7:319–337 [View Article][PubMed]
    [Google Scholar]
  19. Gilbert C., Feschotte C. 2010; Genomic fossils calibrate the long-term evolution of hepadnaviruses. PLoS Biol 8:e1000495 [View Article][PubMed]
    [Google Scholar]
  20. Hirata H., Yamaji Y., Komatsu K., Kagiwada S., Oshima K., Okano Y., Takahashi S., Ugaki M., Namba S. 2010; Pseudo-polyprotein translated from the full-length ORF1 of capillovirus is important for pathogenicity, but a truncated ORF1 protein without variable and CP regions is sufficient for replication. Virus Res 152:1–9 [View Article][PubMed]
    [Google Scholar]
  21. Hotelling H. 1940; The selection of variates for use in prediction with some comments on the problem of nuisance parameters. Ann Math Stat 11:271–283 [View Article]
    [Google Scholar]
  22. Ito K., Qin Y., Guarnieri M., Garcia T., Kwei K., Mizokami M., Zhang J., Li J., Wands J. R., Tong S. 2010; Impairment of hepatitis B virus virion secretion by single-amino-acid substitutions in the small envelope protein and rescue by a novel glycosylation site. J Virol 84:12850–12861 [View Article][PubMed]
    [Google Scholar]
  23. Karlin S., Burge C. 1995; Dinucleotide relative abundance extremes: a genomic signature. Trends Genet 11:283–290 [View Article][PubMed]
    [Google Scholar]
  24. Karlin S., Doerfler W., Cardon L. R. 1994; Why is CpG suppressed in the genomes of virtually all small eukaryotic viruses but not in those of large eukaryotic viruses?. J Virol 68:2889–2897[PubMed]
    [Google Scholar]
  25. Keese P. K., Gibbs A. 1992; Origins of genes: big bang or continuous creation?. Proc Natl Acad Sci U S A 89:9489–9493 [View Article][PubMed]
    [Google Scholar]
  26. Khan N., Guarnieri M., Ahn S. H., Li J., Zhou Y., Bang G., Kim K. H., Wands J. R., Tong S. 2004; Modulation of hepatitis B virus secretion by naturally occurring mutations in the S gene. J Virol 78:3262–3270 [View Article][PubMed]
    [Google Scholar]
  27. Kim S., Lee J., Ryu W. S. 2009; Four conserved cysteine residues of the hepatitis B virus polymerase are critical for RNA pregenome encapsidation. J Virol 83:8032–8040 [View Article][PubMed]
    [Google Scholar]
  28. Kim Y., Hong Y. B., Jung G. 1999; Hepatitis B virus: DNA polymerase activity of deletion mutants. Biochem Mol Biol 47:301–308[PubMed]
    [Google Scholar]
  29. Le Duff Y., Blanchet M., Sureau C. 2009; The pre-S1 and antigenic loop infectivity determinants of the hepatitis B virus envelope proteins are functionally independent. J Virol 83:12443–12451 [View Article][PubMed]
    [Google Scholar]
  30. Le Seyec J., Chouteau P., Cannie I., Guguen-Guillouzo C., Gripon P. 1998; Role of the pre-S2 domain of the large envelope protein in hepatitis B virus assembly and infectivity. J Virol 72:5573–5578[PubMed]
    [Google Scholar]
  31. Le Seyec J., Chouteau P., Cannie I., Guguen-Guillouzo C., Gripon P. 1999; Infection process of the hepatitis B virus depends on the presence of a defined sequence in the pre-S1 domain. J Virol 73:2052–2057[PubMed]
    [Google Scholar]
  32. Li F., Ding S. W. 2006; Virus counterdefense: diverse strategies for evading the RNA-silencing immunity. Annu Rev Microbiol 60:503–531 [View Article][PubMed]
    [Google Scholar]
  33. Lin X., Yuan Z. H., Wu L., Ding J. P., Wen Y. M. 2001; A single amino acid in the reverse transcriptase domain of hepatitis B virus affects virus replication efficiency. J Virol 75:11827–11833 [View Article][PubMed]
    [Google Scholar]
  34. Lucchini S., Desiere F., Brüssow H. 1999; Comparative genomics of Streptococcus thermophilus phage species supports a modular evolution theory. J Virol 73:8647–8656[PubMed]
    [Google Scholar]
  35. Mizokami M., Orito E., Ohba K., Ikeo K., Lau J. Y. N., Gojobori T. 1997; Constrained evolution with respect to gene overlap of hepatitis B virus. J Mol Evol 44 (Suppl 1:S83–S90 [View Article][PubMed]
    [Google Scholar]
  36. Moskovitz D. N., Osiowy C., Giles E., Tomlinson G., Heathcote E. J. 2005; Response to long-term lamivudine treatment (up to 5 years) in patients with severe chronic hepatitis B, role of genotype and drug resistance. J Viral Hepat 12:398–404 [View Article][PubMed]
    [Google Scholar]
  37. Neurath A. R., Kent S. B., Parker K., Prince A. M., Strick N., Brotman B., Sproul P. 1986; Antibodies to a synthetic peptide from the preS 120-145 region of the hepatitis B virus envelope are virus neutralizing. Vaccine 4:35–37 [View Article][PubMed]
    [Google Scholar]
  38. Ni Y., Sonnabend J., Seitz S., Urban S. 2010; The pre-S2 domain of the hepatitis B virus is dispensable for infectivity but serves a spacer function for L-protein-connected virus assembly. J Virol 84:3879–3888 [View Article][PubMed]
    [Google Scholar]
  39. Pavesi A. 2006; Origin and evolution of overlapping genes in the family Microviridae . J Gen Virol 87:1013–1017 [View Article][PubMed]
    [Google Scholar]
  40. Pavesi A., Magiorkinis G., Karlin D. G. 2013; Viral proteins originated de novo by overprinting can be identified by codon usage: application to the gene nursery of Deltaretroviruses . PLoS Comput Biol 9:e1003162 [View Article][PubMed]
    [Google Scholar]
  41. Radziwill G., Tucker W., Schaller H. 1990; Mutational analysis of the hepatitis B virus P gene product: domain structure and RNase H activity. J Virol 64:613–690[PubMed]
    [Google Scholar]
  42. Rancurel C., Khosravi M., Dunker A. K., Romero P. R., Karlin D. 2009; Overlapping genes produce proteins with unusual sequence properties and offer insight into de novo protein creation. J Virol 83:10719–10736 [View Article][PubMed]
    [Google Scholar]
  43. Salisse J., Sureau C. 2009; A function essential to viral entry underlies the hepatitis B virus “a” determinant. J Virol 83:9321–9328 [View Article][PubMed]
    [Google Scholar]
  44. Siegler V. D., Bruss V. 2013; Role of transmembrane domains of hepatitis B virus small surface proteins in subviral-particle biogenesis. J Virol 87:1491–1496 [View Article][PubMed]
    [Google Scholar]
  45. Skalka A. M., Goff S. P. 1993 Reverse Transcriptase Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  46. Suh A., Brosius J., Schmitz J., Kriegs J. O. 2013; The genome of a Mesozoic paleovirus reveals the evolution of hepatitis B viruses. Nat Commun 4:1791 [View Article][PubMed]
    [Google Scholar]
  47. Suh A., Weber C. C., Kehlmaier C., Braun E. L., Green R. E., Fritz U., Ray D. A., Ellegren H. 2014; Early mesozoic coexistence of amniotes and hepadnaviridae. PLoS Genet 10:e1004559 [View Article][PubMed]
    [Google Scholar]
  48. Summers J., Mason W. S. 1982; Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate. Cell 29:403–415 [View Article][PubMed]
    [Google Scholar]
  49. Toh H., Hayashida H., Miyata T. 1983; Sequence homology between retroviral reverse transcriptase and putative polymerases of hepatitis B virus and cauliflower mosaic virus. Nature 305:827–829 [View Article][PubMed]
    [Google Scholar]
  50. Torres C., Fernández M. D., Flichman D. M., Campos R. H., Mbayed V. A. 2013; Influence of overlapping genes on the evolution of human hepatitis B virus. Virology 441:40–48 [View Article][PubMed]
    [Google Scholar]
  51. Torresi J. 2002; The virological and clinical significance of mutations in the overlapping envelope and polymerase genes of hepatitis B virus. J Clin Virol 25:97–106 [View Article][PubMed]
    [Google Scholar]
  52. Zaaijer H. L., van Hemert F. J., Koppelman M. H., Lukashov V. V. 2007; Independent evolution of overlapping polymerase and surface protein genes of hepatitis B virus. J Gen Virol 88:2137–2143 [View Article][PubMed]
    [Google Scholar]
  53. Zhang D., Chen J., Deng L., Mao Q., Zheng J., Wu J., Zeng C., Li Y. 2010; Evolutionary selection associated with the multi-function of overlapping genes in the hepatitis B virus. Infect Genet Evol 10:84–88 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000307
Loading
/content/journal/jgv/10.1099/jgv.0.000307
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error