1887

Abstract

papillomavirus 2 (FcaPV-2) causes premalignant skin lesions in cats and has also been found in a proportion of cutaneous squamous cell carcinomas (SCCs) – a common and potentially fatal cancer of cats. Whilst this could suggest a role of the virus in cancer development, FcaPV-2 has also been detected in skin swabs of normal cats, making it difficult to discern whether the papillomavirus is causing the cancer or merely an ‘innocent bystander’. To distinguish between these two possibilities, real-time PCR was used to determine the viral copy number and the transcriptional activity of FcaPV-2 infections present in 70 formalin-fixed paraffin-embedded skin lesions including 10 papillomavirus-induced premalignant lesions and 60 SCCs. FcaPV-2 gene expression was found in 21 of 60 (35 %) SCCs, all 10 premalignant lesions and none of 10 normal skin samples. The results showed two distinct subsets of SCCs. The majority of the SCCs had low copy numbers of FcaPV-2 DNA (mean of 17 copies per copy of reference gene DNA) and no FcaPV-2 gene expression, suggesting the virus was an incidental finding. In contrast, 20 SCCs had detectable FcaPV-2 E6/E7 gene expression and very high copy numbers of FcaPV-2 DNA, with a mean of 32 930 copies per copy of reference gene DNA. The relative quantity of E6/E7 gene expression and the viral copy number in this group were similar to those found in the papillomavirus-induced premalignant lesions, suggesting that FcaPV-2 may play a role in the development of a subset of feline cutaneous SCCs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000416
2016-05-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/5/1189.html?itemId=/content/journal/jgv/10.1099/jgv.0.000416&mimeType=html&fmt=ahah

References

  1. Andersen C. L., Jensen J. L., Ørntoft T. F. 2004; Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250 [View Article][PubMed]
    [Google Scholar]
  2. Baer K. E., Helton K. 1993; Multicentric squamous cell carcinoma in situ resembling Bowen's disease in cats. Vet Pathol 30:535–543 [View Article][PubMed]
    [Google Scholar]
  3. Brambilla E., Moro D., Gazzeri S., Brambilla C. 1999; Alterations of expression of Rb, p16INK4A and cyclin D1 in non-small cell lung carcinoma and their clinical significance. J Pathol 188:351–360 [View Article][PubMed]
    [Google Scholar]
  4. Flores E. R., Allen-Hoffmann B. L., Lee D., Lambert P. F. 2000; The human papillomavirus type 16 E7 oncogene is required for the productive stage of the viral life cycle. J Virol 74:6622–6631 [View Article][PubMed]
    [Google Scholar]
  5. Gross T. L., Ihrke P. J., Walder E. J., Affolter V. K. 2005; Epidermal Tumors. In Skin Diseases of the Dog and Cat: Clinical and Histopathologic Diagnosis, 2nd edn. pp 574–581 Oxford: Blackwell Science; [CrossRef]
    [Google Scholar]
  6. Hellemans J., Mortier G., De Paepe A., Speleman F., Vandesompele J. 2007; qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19 [View Article][PubMed]
    [Google Scholar]
  7. Isaacson Wechsler E., Wang Q., Roberts I., Pagliarulo E., Jackson D., Untersperger C., Coleman N., Griffin H., Doorbar J. 2012; Reconstruction of human papillomavirus type 16-mediated early-stage neoplasia implicates E6/E7 deregulation and the loss of contact inhibition in neoplastic progression. J Virol 86:6358–6364 [View Article][PubMed]
    [Google Scholar]
  8. Jeon S., Lambert P. F. 1995; Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc Natl Acad Sci U S A 92:1654–1658 [View Article][PubMed]
    [Google Scholar]
  9. Johansson C., Schwartz S. 2013; Regulation of human papillomavirus gene expression by splicing and polyadenylation. Nat Rev Microbiol 11:239–251 [View Article][PubMed]
    [Google Scholar]
  10. Kalantari M., Garcia-Carranca A., Morales-Vazquez C. D., Zuna R., Montiel D. P., Calleja-Macias I. E., Johansson B., Andersson S., Bernard H. U. 2009; Laser capture microdissection of cervical human papillomavirus infections: copy number of the virus in cancerous and normal tissue and heterogeneous DNA methylation. Virology 390:261–267 [View Article][PubMed]
    [Google Scholar]
  11. Klaes R., Woerner S. M., Ridder R., Wentzensen N., Duerst M., Schneider A., Lotz B., Melsheimer P., von Knebel Doeberitz M. 1999; Detection of high-risk cervical intraepithelial neoplasia and cervical cancer by amplification of transcripts derived from integrated papillomavirus oncogenes. Cancer Res 59:6132–6136[PubMed]
    [Google Scholar]
  12. Lee C. T., Capodieci P., Osman I., Fazzari M., Ferrara J., Scher H. I., Cordon-Cardo C. 1999; Overexpression of the cyclin-dependent kinase inhibitor p16 is associated with tumor recurrence in human prostate cancer. Clin Cancer Res 5:977–983[PubMed]
    [Google Scholar]
  13. Lewis J.S., Jr, Chernock R. D., Ma X. J., Flanagan J. J., Luo Y., Gao G., Wang X., El-Mofty S. K. 2012; Partial p16 staining in oropharyngeal squamous cell carcinoma: extent and pattern correlate with human papillomavirus RNA status. Mod Pathol 25:1212–1220 [View Article][PubMed]
    [Google Scholar]
  14. Maglennon G. A., McIntosh P., Doorbar J. 2011; Persistence of viral DNA in the epithelial basal layer suggests a model for papillomavirus latency following immune regression. Virology 414:153–163 [View Article][PubMed]
    [Google Scholar]
  15. McLaughlin-Drubin M. E., Park D., Munger K. 2013; Tumor suppressor p16INK4A is necessary for survival of cervical carcinoma cell lines. Proc Natl Acad Sci U S A 110:16175–16180 [View Article][PubMed]
    [Google Scholar]
  16. Middleton K., Peh W., Southern S., Griffin H., Sotlar K., Nakahara T., El-Sherif A., Morris L., Seth R., other authors. 2003; Organization of human papillomavirus productive cycle during neoplastic progression provides a basis for selection of diagnostic markers. J Virol 77:10186–10201 [View Article][PubMed]
    [Google Scholar]
  17. Miller M. A., Nelson S. L., Turk J. R., Pace L. W., Brown T. P., Shaw D. P., Fischer J. R., Gosser H. S. 1991; Cutaneous neoplasia in 340 cats. Vet Pathol 28:389–395 [View Article][PubMed]
    [Google Scholar]
  18. Munday J. S., Peters-Kennedy J. 2010; Consistent detection of Felis domesticus papillomavirus 2 DNA sequences within feline viral plaques. J Vet Diagn Invest 22:946–949 [View Article][PubMed]
    [Google Scholar]
  19. Munday J. S., Witham A. I. 2010; Frequent detection of papillomavirus DNA in clinically normal skin of cats infected and noninfected with feline immunodeficiency virus. Vet Dermatol 21:307–310 [View Article][PubMed]
    [Google Scholar]
  20. Munday J. S., Kiupel M., French A. F., Howe L., Squires R. A. 2007; Detection of papillomaviral sequences in feline Bowenoid in situ carcinoma using consensus primers. Vet Dermatol 18:241–245 [View Article][PubMed]
    [Google Scholar]
  21. Munday J. S., French A. F., Peters-Kennedy J., Orbell G. M., Gwynne K. 2011a; Increased p16CDKN2A protein within feline cutaneous viral plaques, Bowenoid in situ carcinomas, and a subset of invasive squamous cell carcinomas. Vet Pathol 48:460–465 [View Article][PubMed]
    [Google Scholar]
  22. Munday J. S., Gibson I., French A. F. 2011b; Papillomaviral DNA and increased p16CDKN2A protein are frequently present within feline cutaneous squamous cell carcinomas in ultraviolet-protected skin. Vet Dermatol 22:360–366 [View Article][PubMed]
    [Google Scholar]
  23. Munday J. S., French A. F., Gibson I. R., Knight C. G. 2013; The presence of p16CDKN2A protein immunostaining within feline nasal planum squamous cell carcinomas is associated with an increased survival time and the presence of papillomaviral DNA. Vet Pathol 50:269–273 [View Article][PubMed]
    [Google Scholar]
  24. Orth G. 1986; Epidermodysplasia verruciformis: a model for understanding the oncogenicity of human papillomaviruses. Ciba Found Symp 120:157–174[PubMed]
    [Google Scholar]
  25. Pett M., Coleman N. 2007; Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis?. J Pathol 212:356–367 [View Article][PubMed]
    [Google Scholar]
  26. Schmitt M., Dalstein V., Waterboer T., Clavel C., Gissmann L., Pawlita M. 2011; The HPV16 transcriptome in cervical lesions of different grades. Mol Cell Probes 25:260–265 [View Article][PubMed]
    [Google Scholar]
  27. Smeets S. J., Hesselink A. T., Speel E.-J.M., Haesevoets A., Snijders P. J. F., Pawlita M., Meijer C.J.L.M., Braakhuis B. J. M., Leemans C. R., Brakenhoff R. H. 2007; A novel algorithm for reliable detection of human papillomavirus in paraffin embedded head and neck cancer specimen. Int J Cancer 121:2465–2472 [View Article][PubMed]
    [Google Scholar]
  28. Stoler M. H., Rhodes C. R., Whitbeck A., Wolinsky S. M., Chow L. T., Broker T. R. 1992; Human papillomavirus type 16 and 18 gene expression in cervical neoplasias. Hum Pathol 23:117–128 [View Article][PubMed]
    [Google Scholar]
  29. Subhawong A. P., Subhawong T., Nassar H., Kouprina N., Begum S., Vang R., Westra W. H., Argani P. 2009; Most basal-like breast carcinomas demonstrate the same Rb − /p16+ immunophenotype as the HPV-related poorly differentiated squamous cell carcinomas which they resemble morphologically. Am J Surg Pathol 33:163–175 [View Article][PubMed]
    [Google Scholar]
  30. Thomson N. A., Dunowska M., Munday J. S. 2015; The use of quantitative PCR to detect Felis catus papillomavirus type 2 DNA from a high proportion of queens and their kittens. Vet Microbiol 175:211–217 [View Article][PubMed]
    [Google Scholar]
  31. Thun M. J., DeLancey J. O., Center M. M., Jemal A., Ward E. M. 2010; The global burden of cancer: priorities for prevention. Carcinogenesis 31:100–110 [View Article][PubMed]
    [Google Scholar]
  32. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. 2002; Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034 [View Article][PubMed]
    [Google Scholar]
  33. Wilczynski S. P., Lin B. T., Xie Y., Paz I. B. 1998; Detection of human papillomavirus DNA and oncoprotein overexpression are associated with distinct morphological patterns of tonsillar squamous cell carcinoma. Am J Pathol 152:145–156[PubMed]
    [Google Scholar]
  34. Zeltner R., Borenstein L. A., Wettstein F. O., Iftner T. 1994; Changes in RNA expression pattern during the malignant progression of cottontail rabbit papillomavirus-induced tumors in rabbits. J Virol 68:3620–3630[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000416
Loading
/content/journal/jgv/10.1099/jgv.0.000416
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error