1887

Abstract

Prion diseases are a unique group of transmissible, chronic, neurodegenerative disorders. Following peripheral exposure (e.g. oral), prions often accumulate first within the secondary lymphoid tissues before they infect the central nervous system (CNS). Prion replication within secondary lymphoid tissues is crucial for the efficient spread of disease to the CNS. Once within the CNS, the responses of innate immune cells within it can have a significant influence on neurodegeneration and disease progression. Recently, there have been substantial advances in our understanding of how cross-talk between the host and the vast community of commensal microorganisms present at barrier surfaces such as the gut influences the development and regulation of the host’s immune system. These effects are evident not only in the mucosal immune system in the gut, but also in the CNS. The actions of this microbial community (the microbiota) have many important beneficial effects on host health, from metabolism of nutrients and regulation of host development to protection from pathogen infection. However, the microbiota can also have detrimental effects in some circumstances. In this review we discuss the many and varied interactions between prions, the host and the gut microbiota. Particular emphasis is given to the ways by which changes to the composition of the commensal gut microbiota or congruent pathogen infection may influence prion disease pathogenesis and/or disease susceptibility. Understanding how these factors influence prion pathogenesis and disease susceptibility is important for assessing the risk to infection and the design of novel opportunities for therapeutic intervention.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000507
2016-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/8/1725.html?itemId=/content/journal/jgv/10.1099/jgv.0.000507&mimeType=html&fmt=ahah

References

  1. Asante E. A., Smidak M., Grimshaw A., Houghton R., Tomlinson A., Jeelani A., Jakubcova T., Hamdan S., Richard-Londt A. et al. 2015; A naturally occurring variant of the human prion protein completely prevents prion disease. Nature 522:478–481 [View Article][PubMed]
    [Google Scholar]
  2. Bartelt-Hunt S. L., Bartz J. C. 2013; Behavior of prions in the environment: implications for prion biology. PLoS Pathog 9:e1003113 [View Article][PubMed]
    [Google Scholar]
  3. Beekes M., McBride P. A. 2000; Early accumulation of pathological PrP in the enteric nervous system and gut-associated lymphoid tissue of hamsters orally infected with scrapie. Neurosci Lett 278:181–184 [View Article][PubMed]
    [Google Scholar]
  4. Beringue V., Demoy M., Lasmézas C. I., Gouritin B., Weingarten C., Deslys J. P., Andreux J. P., Couvreur P., Dormont D. 2000; Role of spleen macrophages in the clearance of scrapie agent early in pathogenesis. J Pathol 190:495–502 [View Article][PubMed]
    [Google Scholar]
  5. Bessen R. A., Wilham J. M., Lowe D., Watschke C. P., Shearin H., Martinka S., Caughey B., Wiley J. A. 2012; Accelerated shedding of prions following damage to the olfactory epithelium. J Virol 86:1777–1788 [View Article][PubMed]
    [Google Scholar]
  6. Bishop M. T., Diack A. B., Ritchie D. L., Ironside J. W., Will R. G., Manson J. C. 2013; Prion infectivity in the spleen of a PRNP heterozygous individual with subclinical variant Creutzfeldt-Jakob disease. Brain 136:1139–1145 [View Article][PubMed]
    [Google Scholar]
  7. Bohnlein C., Groschup M. H., Martlbauer E., Pichner R., Gareis M. 2012; Stability of bovine spongiform encephalopathy prions: absence of prion protein degradation by bovine gut microbiota. Zoonoses Pub Heal 59:251–255 [CrossRef]
    [Google Scholar]
  8. Bolton D. C., McKinley M. P., Prusiner S. B. 1982; Identification of a protein that purifies with the scrapie prion. Science 218:1309–1311[PubMed] [CrossRef]
    [Google Scholar]
  9. Bremer J., Baumann F., Tiberi C., Wessig C., Fischer H., Schwarz P., Steele A. D., Toyka K. V., Nave K. A. et al. 2010; Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci 13:310–318 [View Article][PubMed]
    [Google Scholar]
  10. Carmody R. N., Gerber G. K., Luevano J. M., Gatti D. M., Somes L., Svenson K. L., Turnbaugh P. J. 2015; Diet dominates host genotype in shaping the murine gut microbiota. Cell Host & Microbe 17:72–84 [View Article][PubMed]
    [Google Scholar]
  11. Choi G. B., Yim Y. S., Wong H., Kim S., Kim H., Kim S. V., Hoeffer C. A., Littman D. R., Huh J. R. 2016; The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351:933–939 [View Article][PubMed]
    [Google Scholar]
  12. Claesson M. J., O'Toole P. W. 2010; Evaluating the latest high-throughput molecular techniques for the exploration of microbial gut communities. Gut Microbes 1:277–278 [View Article][PubMed]
    [Google Scholar]
  13. Claesson M. J., Jeffery I. B., Conde S., Power S. E., O'Connor E. M., Cusack S., Harris H. M., Coakley M., Lakshminarayanan B. et al. 2012; Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184 [View Article][PubMed]
    [Google Scholar]
  14. Clewley J. P., Kelly C. M., Andrews N., Kelly V., Mallinson G., Kaisar M., Hilton D. A., Ironside J. W., Edwards P. et al. 2009; Prevalence of disease related prion protein in anonymous tonsil specimens in Britain: cross sectional opportunistic survey. Br Med J 338:b1442 [CrossRef]
    [Google Scholar]
  15. Coitinho A. S., Roesler R., Martins V. R., Brentani R. R., Izquierdo I. 2003; Cellular prion protein ablation impairs behavior as a function of age. Neuroreport 14:1375–1379 [View Article][PubMed]
    [Google Scholar]
  16. Collins S. M., Surette M., Bercik P. 2012; The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10:735–742 [CrossRef]
    [Google Scholar]
  17. Combrinck M. I., Perry V. H., Cunningham C. 2002; Peripheral infection evokes exaggerated sickness behaviour in pre-clinical murine prion disease. Neuroscience 112:7–11 [View Article][PubMed]
    [Google Scholar]
  18. Correale J., Farez M. F. 2013; Parasite infections in multiple sclerosis modulate immune responses through a retinoic acid-dependent pathway. J Immunol 191:3827–3837 [View Article][PubMed]
    [Google Scholar]
  19. Cunningham C., Boche D., Perry V. H. 2002; Transforming growth factor beta1, the dominant cytokine in murine prion disease: influence on inflammatory cytokine synthesis and alteration of vascular extracellular matrix. Neuropathol Appl Neurobiol 28:107–119[PubMed] [CrossRef]
    [Google Scholar]
  20. Cunningham C., Wilcockson D. C., Campion S., Lunnon K., Perry V. H. 2005; Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 25:9275–9284 [View Article][PubMed]
    [Google Scholar]
  21. Cunningham C., Campion S., Lunnon K., Murray C. L., Woods J. F., Deacon R. M., Rawlins J. N., Perry V. H. 2009; Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry 65:304–312 [View Article][PubMed]
    [Google Scholar]
  22. Dagleish M. P., Hamilton S., González L., Eaton S. L., Steele P., Finlayson J., Sisó S., Pang Y., Sales J. et al. 2010; Digestion and transportation of bovine spongiform encephalopathy-derived prion protein in the sheep intestine. J Gen Virol 91:3116–3123 [View Article][PubMed]
    [Google Scholar]
  23. De Almeida C. J., Chiarini L. B., da Silva J. P., E Silva P. M., Martins M. A., Linden R. 2005; The cellular prion protein modulates phagocytosis and inflammatory response. J Leukoc Biol 77:238–246 [View Article][PubMed]
    [Google Scholar]
  24. De Lucia C., Rinchon A., Olmos-Alonso A., Riecken K., Fehse B., Boche D., Perry V. H., Gomez-Nicola D. 2015; Microglia regulate hippocampal neurogenesis during chronic neurodegeneration. Brain Beh Immun 55:179–190 [View Article]
    [Google Scholar]
  25. De Luigi A., Colombo L., Diomede L., Capobianco R., Mangieri M., Miccolo C., Limido L., Forloni G., Tagliavini F., Salmona M. 2008; The efficacy of tetracyclines in peripheral and intracerebral prion infection. PLoS One 3:e1888 [View Article][PubMed]
    [Google Scholar]
  26. Denes A., Humphreys N., Lane T. E., Grencis R., Rothwell N. 2010; Chronic systemic infection exacerbates ischemic brain damage via a CCL5 (regulated on activation, normal T-cell expressed and secreted)-mediated proinflammatory response in mice. Neurobiol Dis 30:10086–10095
    [Google Scholar]
  27. Denkers N. D., Telling G. C., Hoover E. A. 2011; Minor oral lesions facilitate transmission of chronic wasting disease. J Virol 85:1396–1399 [View Article][PubMed]
    [Google Scholar]
  28. Dervishi E., Lam T. H., Dunn S. M., Zwierzchowski G., Saleem F., Wishart D. S., Ametaj B. N. 2015; Recombinant mouse prion protein alone or in combination with lipopolysaccharide alters expression of innate immunity genes in the colon of mice. Prion 9:59–73 [View Article][PubMed]
    [Google Scholar]
  29. deSchoolmeester M. L., Little M. C., Rollins B. J., Else K. J. 2003; Absence of CC chemokine ligand 2 results in an altered Th1/Th2 cytokine balance and failure to expel Trichuris muris infection. J Immunol 170:4693–4700[PubMed] [CrossRef]
    [Google Scholar]
  30. Donaldson D. S., Kobayashi A., Ohno H., Yagita H., Williams I. R., Mabbott N. A. 2012; M cell-depletion blocks oral prion disease pathogenesis. Mucosal Immunol 5:216–225 [View Article][PubMed]
    [Google Scholar]
  31. Donaldson D. S., Bradford B. M., Artis D., Mabbott N. A. 2015a; Reciprocal regulation of lymphoid tissue development in the large intestine by IL-25 and IL-23. Mucosal Immunol 8:582–595 [CrossRef]
    [Google Scholar]
  32. Donaldson D. S., Else K. J., Mabbott N. A. 2015b; The gut-associated lymphoid tissues in the small intestine, not the large intestine, play a major role in oral prion disease pathogenesis. J Virol 15:9532–9547 [CrossRef]
    [Google Scholar]
  33. Erny D., Hrabě de Angelis A. L., Jaitin D., Wieghofer P., Staszewski O., David E., Keren-Shaul H., Mahlakoiv T., Jakobshagen K. et al. 2015; Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18:965–977 [View Article][PubMed]
    [Google Scholar]
  34. Fadok V. A., Bratton D. L., Konowal A., Freed P. W., Westcott J. Y., Henson P. M. 1998; Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101:890–898 [View Article][PubMed]
    [Google Scholar]
  35. Farache J., Koren I., Milo I., Gurevich I., Kim K. W., Zigmond E., Furtado G. C., Lira S. A., Shakhar G. 2013; Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 38:581–595 [View Article][PubMed]
    [Google Scholar]
  36. Frank D. N., St Amand A. L., Feldman R. A., Boedeker E. C., Harpaz N., Pace N. R. 2007; Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104:13780–13785 [View Article][PubMed]
    [Google Scholar]
  37. Furusawa Y., Obata Y., Fukuda S., Endo T. A., Nakato G., Takahashi D., Nakanishi Y., Uetake C., Kato K. et al. 2013; Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450 [View Article][PubMed]
    [Google Scholar]
  38. Garske T., Ghani A. C. 2010; Uncertainty in the tail of the variant Creutzfeldt-Jakob disease epidemic in the UK. PLoS One 5:e15626 [View Article][PubMed]
    [Google Scholar]
  39. Gibson M. K., Crofts T. S., Dantas G. 2015; Antibiotics and the developing infant gut microbiota and resistome. Curr Opin Microbiol 27:51–56 [CrossRef]
    [Google Scholar]
  40. Gill O. N., Spencer Y., Richard-Loendt A., Kelly C., Dabaghian R., Boyes L., Lineham J., Simmons M., Webb P. 2013; Prevelent abnormal prion protein in human appendixes after bovine spongiform encephalopathy epizootic: large scale survey. Br Med J 347:f5675 [CrossRef]
    [Google Scholar]
  41. Glatzel M., Heppner F. L., Albers K. M., Aguzzi A. 2001; Sympathetic innervation of lymphoreticular organs is rate limiting for prion neuroinvasion. Neuron 31:25–34[PubMed] [CrossRef]
    [Google Scholar]
  42. Glaysher B. R., Mabbott N. A. 2007a; Isolated lymphoid follicle maturation induces the development of follicular dendritic cells. Immunology 120:336–344 [CrossRef]
    [Google Scholar]
  43. Glaysher B. R., Mabbott N. A. 2007b; Role of the GALT in scrapie agent neuroinvasion from the intestine. J Immunol 178:3757–3766 [CrossRef]
    [Google Scholar]
  44. Gommerman J. L., Browning J. L. 2003; Lymphotoxin/light, lymphoid microenvironments and autoimmune disease. Nat Rev Immunol 3:642–654 [View Article][PubMed]
    [Google Scholar]
  45. González L., Martin S., Sisó S., Konold T., Ortiz-Peláez A., Phelan L., Goldmann W., Stewart P., Saunders G. et al. 2009; High prevalence of scrapie in a dairy goat herd: tissue distribution of disease-associated PrP and effect of PRNP genotype and age. Vet Res 40:65 [View Article][PubMed]
    [Google Scholar]
  46. Hamada H., Hiroi T., Nishiyama Y., Takahashi H., Masunaga Y., Hachimura S., Kaminogawa S., Takahashi-Iwanaga H., Iwanaga T. et al. 2002; Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol 168:57–64[PubMed] [CrossRef]
    [Google Scholar]
  47. Haïk S., Marcon G., Mallet A., Tettamanti M., Welaratne A., Giaccone G., Azimi S., Pietrini V., Fabreguettes J. R. et al. 2014; Doxycycline in Creutzfeldt-Jakob disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol 13:150–158 [View Article][PubMed]
    [Google Scholar]
  48. Heppner F. L., Christ A. D., Klein M. A., Prinz M., Fried M., Kraehenbuhl J. P., Aguzzi A. 2001; Transepithelial prion transport by M cells. Nat Med 7:976–977 [View Article][PubMed]
    [Google Scholar]
  49. Hill A. F., Butterworth R. J., Joiner S., Jackson G., Rossor M. N., Thomas D. J., Frosh A., Tolley N., Bell J. E. et al. 1999; Investigation of variant Creutzfeldt-Jakob disease and other human prion diseases with tonsil biopsy samples. Lancet 353:183–189[PubMed] [CrossRef]
    [Google Scholar]
  50. Holm J. B., Sorobetea D., Kiilerich P., Ramayo-Caldas Y., Estellé J., Ma T., Madsen L., Kristiansen K., Svensson-Frej M. 2015; Chronic Trichuris muris infection decreases diversity of the intestinal microbiota and concomitantly increases the abundance of Lactobacilli . PLoS One 10:e0125495 [View Article][PubMed]
    [Google Scholar]
  51. Holmes C., Cunningham C., Zotova E., Woolford J., Dean C., Kerr S., Culliford D., Perry V. H. 2009; Systemic inflammation and disease progression in Alzheimer disease. Neurology 73:768–774 [View Article][PubMed]
    [Google Scholar]
  52. Hooper L. V., Littman D. R., Macpherson A. J. 2012; Interactions between the microbiota and the immune system. Science 336:1268–1273 [View Article][PubMed]
    [Google Scholar]
  53. Horiuchi M., Furuoka H., Kitamura N., Shinagawa M. 2006; Alymphoplasia mice are resistant to prion infection via oral route. Jap J Vet Res 53:149–157
    [Google Scholar]
  54. Huang F. P., Farquhar C. F., Mabbott N. A., Bruce M. E., MacPherson G. G. 2002; Migrating intestinal dendritic cells transport PrPSc from the gut. J Gen Virol 83:267–271 [View Article][PubMed]
    [Google Scholar]
  55. Jeffrey M., González L., Espenes A., Press C. M., Martin S., Chaplin M., Davis L., Landsverk T., MacAldowie C. et al. 2006; Transportation of prion protein across the intestinal mucosa of scrapie-susceptible and scrapie-resistant sheep. J Pathol 209:4–14 [View Article][PubMed]
    [Google Scholar]
  56. Jeurink P. V., van Bergenhenegouwen J., Jiménez E., Knippels L. M., Fernández L., Garssen J., Knol J., Rodríguez J. M., Martín R. 2013; Human milk: a source of more life than we imagine. Benef Microbes 4:17–30 [View Article][PubMed]
    [Google Scholar]
  57. Kamada N., Kim Y. G., Sham H. P., Vallance B. A., Puente J. L., Martens E. C., Núñez G. 2012; Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336:1325–1329 [View Article][PubMed]
    [Google Scholar]
  58. Kashyap P. C., Marcobal A., Ursell L. K., Larauche M., Duboc H., Earle K. A., Sonnenburg E. D., Ferreyra J. A., Higginbottom S. K. et al. 2013; Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology 144:967–977 [View Article][PubMed]
    [Google Scholar]
  59. Kaatz M., Fast C., Ziegler U., Balkema-Buschmann A., Hammerschmidt B., Keller M., Oelschlegel A., McIntyre L., Groschup M. H. 2012; Spread of classic BSE prions from the gut via the peripheral nervous system to the brain. Am J Pathol 181:515–524 [View Article][PubMed]
    [Google Scholar]
  60. Kranich J., Krautler N. J., Falsig J., Ballmer B., Li S., Hutter G., Schwarz P., Moos R., Julius C. et al. 2010; Engulfment of cerebral apoptotic bodies controls the course of prion disease in a mouse strain-dependent manner. J Exp Med 207:2271–2281 [View Article][PubMed]
    [Google Scholar]
  61. Krüger D., Thomzig A., Lenz G., Kampf K., McBride P., Beekes M. 2009; Faecal shedding, alimentary clearance and intestinal spread of prions in hamsters fed with scrapie. Vet Res 40:04 [View Article]
    [Google Scholar]
  62. Kujala P., Raymond C. R., Romeijn M., Godsave S. F., van Kasteren S. I., Wille H., Prusiner S. B., Mabbott N. A., Peters P. J. 2011; Prion uptake in the gut: identification of the first uptake and replication sites. PLoS Pathog 7:e1002449 [View Article][PubMed]
    [Google Scholar]
  63. Legname G., Baskakov I. V., Nguyen H. O., Riesner D., Cohen F. E., DeArmond S. J., Prusiner S. B. 2004; Synthetic mammalian prions. Science 305:673–676 [View Article][PubMed]
    [Google Scholar]
  64. Lev M., Raine C. S., Levenson S. M. 1971; Enhanced survival of germfree mice after infection with irradiated scrapie brain. Experientia 27:1358–1359 [View Article][PubMed]
    [Google Scholar]
  65. Ligios C., Sigurdson C. J., Santucciu C., Carcassola G., Manco G., Basagni M., Maestrale C., Cancedda M. G., Madau L., Aguzzi A. 2005; PrPSc in mammary glands of sheep affected by scrapie and mastitis. Nat Med 11:1137–1138 [View Article][PubMed]
    [Google Scholar]
  66. Ligios C., Cancedda M. G., Carta A., Santucciu C., Maestrale C., Demontis F., Saba M., Patta C., DeMartini J. C. et al. 2011; Sheep with scrapie and mastitis transmit infectious prions through the milk. J Virol 85:1136–1139 [View Article][PubMed]
    [Google Scholar]
  67. Little M. C., Bell L. V., Cliffe L. J., Else K. J. 2005; The characterization of intraepithelial lymphocytes, lamina propria leukocytes, and isolated lymphoid follicles in the large intestine of mice infected with the intestinal nematode parasite Trichuris muris . J Immunol 175:6713–6722[PubMed] [CrossRef]
    [Google Scholar]
  68. Lorenz R. G., Chaplin D. D., McDonald K. G., McDonough J. S., Newberry R. D. 2003; Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin β receptor, and TNF receptor 1 function. J Immunol 170:5474–5482 [View Article]
    [Google Scholar]
  69. Lunnon K., Teeling J. L., Tutt A. L., Cragg M. S., Glennie M. J., Perry V. H. 2011; Systemic inflammation modulates Fc receptor expression on microglia during chronic neurodegeneration. J Immunol 186:7215–7224 [View Article][PubMed]
    [Google Scholar]
  70. Mabbott N. A., Mackay F., Minns F., Bruce M. E. 2000; Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie. Nat Med 6:719–720 [View Article][PubMed]
    [Google Scholar]
  71. Mabbott N. A., Young J., McConnell I., Bruce M. E. 2003; Follicular dendritic cell dedifferentiation by treatment with an inhibitor of the lymphotoxin pathway dramatically reduces scrapie susceptibility. J Virol 77: 6845–6854[PubMed] [CrossRef]
    [Google Scholar]
  72. Mabbott N. A., Donaldson D. S., Ohno H., Williams I. R., Mahajan A. 2013; Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol 6:666–677 [View Article][PubMed]
    [Google Scholar]
  73. Mabbott N. A., Bradford B. M. 2015; The good, the bad, and the ugly of dendritic cells during prion disease. J Immunolog Res 2015:168574–13 [View Article]
    [Google Scholar]
  74. MacPherson G., Milling S., Yrlid U., Cousins L., Turnbull E., Huang F. P. 2004; Uptake of antigens from the intestine by dendritic cells. Ann N Y Acad Sci 1029:75–82 [View Article][PubMed]
    [Google Scholar]
  75. Magnusson K. R., Hauck L., Jeffrey B. M., Elias V., Humphrey A., Nath R., Perrone A., Bermudez L. E. 2015; Relationships between diet-related changes in the gut microbiome and cognitive flexibility. Neuroscience 300:128–140 [View Article][PubMed]
    [Google Scholar]
  76. Maignien T., Shakweh M., Calvo P., Marcé D., Salès N., Fattal E., Deslys J. P., Couvreur P., Lasmezas C. I. 2005; Role of gut macrophages in mice orally contaminated with scrapie or BSE. Int J Pharm 298:293–304 [View Article][PubMed]
    [Google Scholar]
  77. Maluquer de Motes C., Grassi J., Simon S., Herva M. E., Torres J. M., Pumarola M., Girones R. 2008; Excretion of BSE and scrapie prions in stools from murine models. Vet Micro 131:205–211 [View Article]
    [Google Scholar]
  78. Maluquer de Motes C., Espinosa J.-C., Esteban A., Calvo M., Girones R., Torres J. M. 2012; Persistence of the bovine spongiform encephalopathy infectious agent in sewage. Env Res 117:1–7 [View Article]
    [Google Scholar]
  79. McBride P. A., Schulz-Schaeffer W. J., Donaldson M., Bruce M., Diringer H., Kretzschmar H. A., Beekes M. 2001; Early spread of scrapie from the gastrointestinal tract to the central nervous system involves autonomic fibers of the splanchnic and vagus nerves. J Virol 75:9320–9327 [View Article][PubMed]
    [Google Scholar]
  80. McCulloch L., Brown K. L., Bradford B. M., Hopkins J., Bailey M., Rajewsky K., Manson J. C., Mabbott N. A. 2011; Follicular dendritic cell-specificprion protein (PrPC) expression alone is sufficient to sustain prion infection in the spleen. PLoS Pathog 7:e1002402 [View Article][PubMed]
    [Google Scholar]
  81. Montrasio F., Frigg R., Glatzel M., Klein M. A., Mackay F., Aguzzi A., Weissmann C. 2000; Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288:1257–1259 [View Article][PubMed]
    [Google Scholar]
  82. Nichols T. A., Fischer J. W., Spraker T. R., Kong Q., VerCauteren K. C. 2015; CWD prions remain infectious after passage through the digestive system of coyotes (Canis latrans). Prion 9:367–375 [View Article][PubMed]
    [Google Scholar]
  83. Niess J. H., Brand S., Gu X., Landsman L., Jung S., McCormick B. A., Vyas J. M., Boes M., Ploegh H. L. et al. 2005; CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307:254–258 [View Article][PubMed]
    [Google Scholar]
  84. Nuvolone M., Kana V., Hutter G., Sakata D., Mortin-Toth S. M., Russo G., Danska J. S., Aguzzi A. 2013; SIRPα polymorphisms, but not the prion protein, control phagocytosis of apoptotic cells. J Exp Med 210:2539–2552 [View Article][PubMed]
    [Google Scholar]
  85. Nuvolone M., Hermann M., Sorce S., Russo G., Tiberi C., Schwarz P., Minikel E., Sanoudou D., Pelczar P. et al. 2016; Strictly co-isogenic C57BL/6J-Prnp-/- mice: a rigorous resource for prion science. J Exp Med 213:313–327 [View Article][PubMed]
    [Google Scholar]
  86. Peden A. H., Head M. W., Diane L. R., Jeanne E. B., James W. I., Ritchie D. L., Bell J. E., Ironside J. W. 2004; Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet 364:527–529 [View Article]
    [Google Scholar]
  87. Prinz M., Huber G., Macpherson A. J., Heppner F. L., Glatzel M., Eugster H. P., Wagner N., Aguzzi A. 2003; Oral prion infection requires normal numbers of Peyer's patches but not of enteric lymphocytes. Am J Pathol 162:1103–1111 [View Article][PubMed]
    [Google Scholar]
  88. Prinz M., Priller J. 2014; Microglia and brain macrophages in the molecular age. Nat Rev Neurosci 15:300–312 [View Article][PubMed]
    [Google Scholar]
  89. Prusiner S. B., Bolton D. C., Groth D. F., Bowman K. A., Cochran S. P., McKinley M. P. 1982; Further purification and characterization of scrapie prions. Biochemistry 21:6942–6950[PubMed] [CrossRef]
    [Google Scholar]
  90. Raymond C. R., Aucouturier P., Mabbott N. A. 2007; In vivo depletion of CD11c+ cells impairs scrapie agent neuroinvasion from the intestine. J Immunol 179:7758–7766 [View Article][PubMed]
    [Google Scholar]
  91. Reikvam D. H., Erofeev A., Sandvik A., Grcic V., Jahnsen F. L., Gaustad P., McCoy K. D., Macpherson A. J., Meza-Zepeda L. A. et al. 2011; Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PLoS One 6:e17996 [View Article][PubMed]
    [Google Scholar]
  92. Rescigno M., Urbano M., Valzasina B., Francolini M., Rotta G., Bonasio R., Granucci F., Kraehenbuhl J. P., Ricciardi-Castagnoli P. 2001; Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2:361–367 [View Article][PubMed]
    [Google Scholar]
  93. Russell W. R., Hoyles L., Flint H. J., Dumas M.-E. 2013; Colonic bacterial metabolites and human health. Curr Op Microbiol 16:246–254 [View Article]
    [Google Scholar]
  94. Safar J. G., Lessard P., Tamgüney G., Freyman Y., Deering C., Letessier F., Dearmond S. J., Prusiner S. B. 2008; Transmission and detection of prions in feces. J Infect Dis 198:81–89 [View Article][PubMed]
    [Google Scholar]
  95. Sakai K., Hasebe R., Takahashi Y., Song C. H., Suzuki A., Yamasaki T., Horiuchi M. 2013; Absence of CD14 delays progression of prion diseases accompanied by increased microglial activation. J Virol 87:13433–13445 [View Article][PubMed]
    [Google Scholar]
  96. Saleem F., Bjorndahl T. C., Ladner C. L., Perez-Pineiro R., Ametaj B. N., Wishart D. S. 2014; Lipopolysaccharide induced conversion of recombinant prion protein. Prion 8:221–232 [View Article]
    [Google Scholar]
  97. Savidge T. C., Smith M. W., James P. S., Aldred P. 1991; Salmonella-induced M-cell formation in germ-free mouse Peyer's patch tissue. Am J Pathol 139:177–184[PubMed]
    [Google Scholar]
  98. Scherbel C., Pichner R., Groschup M. H., Mueller-Hellwig S., Scherer S., Dietrich R., Maertlbauer E., Gareis M. 2006; Degradation of scrapie associated prion protein (PrPSc) by the gastrointestinal microbiota of cattle. Vet Res 37:695–703 [View Article][PubMed]
    [Google Scholar]
  99. Scherbel C., Pichner R., Groschup M. H., Mueller-Hellwig S., Scherer S., Dietrich R., Maertlbauer E., Gareis M. 2007; Infectivity of scrapie prion protein (PrPSc) following in vitro digestion with bovine gastrointestinalmicrobiota. Zoonoses Public Health 54:185–190 [CrossRef]
    [Google Scholar]
  100. Sender R., Fuchs S., Milo R. 2015; Revised estimates for the number of human and bacteria cells in the body. bioRxiv http://dx.doi.org/10.1101/036103
    [Google Scholar]
  101. Sigurdson C. J., Heikenwalder M., Manco G., Barthel M., Schwarz P., Stecher B., Krautler N. J., Hardt W. D., Seifert B. et al. 2009; Bacterial colitis increases susceptibility to oral prion disease. J Infect Dis 199:243–252 [View Article][PubMed]
    [Google Scholar]
  102. Sommer F., Bäckhed F. 2013; The gut microbiota: masters of host development and physiology. Nat Rev Microbiol 11:227–238 [View Article][PubMed]
    [Google Scholar]
  103. Spielhaupter C., Schätzl H. M. 2001; PrPC directly interacts with proteins involved in signaling pathways. J Biol Chem 276:44604–44612 [View Article][PubMed]
    [Google Scholar]
  104. Spraker T. R., Gidlewski T. L., Balachandran A., VerCauteren K. C., Creekmore L., Munger R. D. 2006; Detection of PrPCWD in postmortem rectal lymphoidtissues in Rocky Mountain elk (Cervus elaphus nelsoni) infected with chronic wasting disease. J Vet Diag Invest 18:553–557 [View Article]
    [Google Scholar]
  105. Spraker T. R., VerCauteren K. C., Gidlewski T., Schneider D. A., Munger R., Balachandran A., O'Rourke K. 2009; Antermortem detection of PrPCWD in preclinical, ranch-raised Rocky Mountain elk (Cervus elaphus nelsoni) by biopsy of the rectal mucosa. J Vet Diag Invest 21:15–24 [View Article]
    [Google Scholar]
  106. Steele A. D., Lindquist S., Aguzzi A. 2007; The prion protein knockout mouse: a phenotype under challenge. Prion 1:83–93[PubMed] [CrossRef]
    [Google Scholar]
  107. Sudo N., Chida Y., Aiba Y., Sonoda J., Oyama N., Yu X. N., Kubo C., Koga Y. 2004; Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558:263–275 [View Article][PubMed]
    [Google Scholar]
  108. Tagliavini F., Forloni G., Colombo L., Rossi G., Girola L., Canciani B., Angeretti N., Giampaolo L., Peressini E. et al. 2000; Tetracycline affects abnormal properties of synthetic PrP peptides and PrPSc in vitro . J Mol Biol 300:1309–1322 [View Article][PubMed]
    [Google Scholar]
  109. Tahoun A., Mahajan S., Paxton E., Malterer G., Donaldson D. S., Wang D., Tan A., Gillespie T. L., O'Shea M. et al. 2012; Salmonella transforms follicle-associated epithelial cells into M cells to promote intestinal invasion. Cell Host Microbe 12:645–666 [View Article][PubMed]
    [Google Scholar]
  110. Takakura I., Miyazawa K., Kanaya T., Itani W., Watanabe K., Ohwada S., Watanabe H., Hondo T., Rose M. T. et al. 2011; Orally administered prion protein is incorporated by M cells and spreads into lymphoid tissues with macrophages in prion protein knockout mice. Am J Pathol 179:1301–1309 [View Article][PubMed]
    [Google Scholar]
  111. Tamguney G., Giles K., Glidden D., Lessard P., Wille H., Tremblay P., Groth D. F., Yehiely F., Korth C. et al. 2008; Genes contributing to prion pathogenesis. J Gen Virol 89:1777–1788 [View Article]
    [Google Scholar]
  112. Tamgüney G., Miller M. W., Wolfe L. L., Sirochman T. M., Glidden D. V., Palmer C., Lemus A., DeArmond S. J., Prusiner S. B. 2009; Asymptomatic deer excrete infectious prions in faeces. Nature 461:529–532 [View Article][PubMed]
    [Google Scholar]
  113. Terahara K., Yoshida M., Igarashi O., Nochi T., Pontes G. S., Hase K., Ohno H., Kurokawa S., Mejima M. et al. 2008; Comprehensive gene expression profiling of Peyer's patch M cells, villous M-like cells, and intestinal epithelial cells. J Immunol 180:7840–7846[PubMed] [CrossRef]
    [Google Scholar]
  114. Thackray A. M., McKenzie A. N., Klein M. A., Lauder A., Bujdoso R. 2004; Accelerated prion disease in the absence of interleukin-10. J Virol 78:13697–13707 [View Article][PubMed]
    [Google Scholar]
  115. Thomsen B. V, Schneider D. A., O'Rourke K. I, Gidlewski T., McLane J., Allen R. W., McIsaac A. A., Mitchell G. B., Keane D. P. 2012; Diagnostic accuracy of rectal mucosa biopsy testing for chronic wasting disease within white-tailed deer (Odocoileus virginianus) herds in North America: effects of age, sex, polymorphism at PRNP codon 96, and disease progression. J Vet Diag Invest 24:878–887
    [Google Scholar]
  116. Tobler I., Gaus S. E., Deboer T., Achermann P., Fischer M., Rülicke T., Moser M., Oesch B., McBride P. A. et al. 1996; Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380:639–642 [View Article][PubMed]
    [Google Scholar]
  117. Turnbaugh P. J., Ridaura V. K., Faith J. J., Rey F. E., Knight R., Gordon J. 2009; The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Trans Med 1:6ra14 [View Article]
    [Google Scholar]
  118. Valleron A. J., Boelle P. Y., Will R., Cesbron J. Y. 2001; Estimation of epidemic size and incubation time based on age characteristics of vCJD in the United Kingdom. Science 294:1726–1728 [View Article][PubMed]
    [Google Scholar]
  119. Vallon-Eberhard A., Landsman L., Yogev N., Verrier B., Jung S. 2006; Transepithelial pathogen uptake into the small intestinal lamina propria. J Immunol 176:2465–2469[PubMed] [CrossRef]
    [Google Scholar]
  120. Van Keulen L. J., Schreuder B. E., Vromans M. E., Langeveld J. P., Smits M. A. 2000; Pathogenesis of natural scrapie in sheep. Arch Virol Supplementum 16:57–71
    [Google Scholar]
  121. van Keulen L. J. M., Bossers A., van Zijderveld F. 2008a; TSE pathogenesis in cattle and sheep. Vet Res 39:24 [View Article]
    [Google Scholar]
  122. van Keulen L. J. M., Vromans M. E. W., Dolstra C. H., Bossers A., van Zijderveld F. G. 2008b; Pathogenesis of bovine spongiform encephalopathy in sheep. Arch Virol 153:445–453 [View Article]
    [Google Scholar]
  123. VerCauteren K. C., Pilon J. L., Nash P. B., Phillips G. E., Fischer J. W. 2012; Prion remains infectious after passage through digestive system of American crows (Corvus brachyrhynchos). PLoS One 7:e45774 [View Article][PubMed]
    [Google Scholar]
  124. Vincenti J. E., Murphy L., Grabert K., McColl B. W., Cancellotti E., Freeman T. C., Manson J. C. 2016; Defining the microglial response during the time course of chronic neurodegeneration. J Virol 90:3003–3017 [View Article]
    [Google Scholar]
  125. Wade W. F., Dees C., German T. L., Marsh R. F. 1986; Effect of bacterial flora and mouse genotype (euthymic or athymic) on scrapie pathogenesis. J Leukoc Biol 40:525–532[PubMed]
    [Google Scholar]
  126. Wakelin D. 1967; Acquired immunity to Trichuris muris in the albino laboratory mouse. Parasitology 57:515–524[PubMed] [CrossRef]
    [Google Scholar]
  127. Walz R., Amaral O. B., Rockenbach I. C., Roesler R., Izquierdo I., Cavalheiro E. A., Martins V. R., Brentani R. R. 1999; Increased sensitivity to seizures in mice lacking cellular prion protein. Epilepsia 40:1679–1682 [View Article][PubMed]
    [Google Scholar]
  128. Wang F., Wang X., Yuan C. G., Ma J. 2010; Generating a prion with bacterially expressed recombinant prion protein. Science 327:1132–1135 [View Article][PubMed]
    [Google Scholar]
  129. Wilesmith J. W. 1993; BSE: epidemiological approaches, trials and tribulations. Prev Vet Med 18:33–42 [View Article]
    [Google Scholar]
  130. Zhan Y., Paolicelli R. C., Sforazzini F., Weinhard L., Bolasco G., Pagani F., Vyssotski A. L., Bifone A., Gozzi A. et al. 2014; Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 17:400–406 [View Article]
    [Google Scholar]
  131. Zhu C., Schwarz P., Abakumova I., Aguzzi A. 2015; Unaltered prion pathogenesis in a mouse model of high-fat diet-induced insulin resistance. PLoS One 10:e0144983 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000507
Loading
/content/journal/jgv/10.1099/jgv.0.000507
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error