1887

Abstract

Rotavirus A is one of the main causative agents of diarrhoea in lactating and weaned pigs worldwide. Its impact in the swine industry is well documented. However, in Chile, the current epidemiological status of rotavirus on porcine farms is unknown. This study evaluated the current epidemiologic status of rotavirus A infection in Chile using on-farm detection techniques, electrophoretic confirmation, genotyping and phylogenetic clustering by analysis of partial sequences of VP4 and VP7 genes. Rotavirus A was detected in four out of five farms with an overall prevalence of 17.7 % in diarrhoeic pigs. The average age of diarrhoea onset was at 32±6.2 days, corresponding to weaning pigs, and rotavirus was not detected in lactating piglets. Molecular characterization indicated that genotypes G5, G3, P[7] and P[13] are currently the most widely represented on these pigs farms. The phylogenetic analysis showed that farms shared similar G types (VP7), which might denote a common origin. Meanwhile, [P] types (VP4) showed considerable genetic diversity, and this might represent a high rate of reassortment of this genetic segment in rotavirus circulating in the researched area. These findings demonstrate the importance of considering both the geographical and production factors to accurately determine rotavirus prevalence status at the national level, and have relevant implications in determining effective strategies for rotavirus infection control on porcine farms.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000662
2017-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/4/539.html?itemId=/content/journal/jgv/10.1099/jgv.0.000662&mimeType=html&fmt=ahah

References

  1. Muirhead MR, Alexander TJL. Managing Pig Health and the Treatment of Disease: A Reference for the Farm, 1st ed. Sheffield: 5m Publishing; 1997 pp. 610
    [Google Scholar]
  2. Estes MK. Rotaviruses and their replication. In Knipe DM, Howley PM. (editors) Fields Virology, 4th ed. Philadelphia: Lippincott-Raven, Lippincott; 2001 pp. 1741–1785
    [Google Scholar]
  3. Woode GN, Bridger J, Hall GA, Jones J, Jackson G. The isolation of reovirus-like agents (rotaviruses) from acute gastroenteritis of piglets (Plates XVI). J Med Microbiol 1976; 9:203–209 [View Article][PubMed]
    [Google Scholar]
  4. Matthijnssens J, Miño S, Papp H, Potgieter C, Novo L et al. Complete molecular genome analyses of equine rotavirus A strains from different continents reveal several novel genotypes and a largely conserved genotype constellation. J Gen Virol 2012; 93:866–875 [View Article][PubMed]
    [Google Scholar]
  5. Mihalov-Kovács E, Gellért Á, Marton S, Farkas SL, Fehér E et al. Candidate new rotavirus species in sheltered dogs, Hungary. Emerg Infect Dis 2015; 21:660–663 [View Article][PubMed]
    [Google Scholar]
  6. Cashman O, Lennon G, Sleator RD, Power E, Fanning S et al. Changing profile of the bovine rotavirus G6 population in the south of Ireland from 2002 to 2009. Vet Microbiol 2010; 146:238–244 [View Article][PubMed]
    [Google Scholar]
  7. Collins PJ, O'Shea H, Cashman O, Lennon G, Pidgeon E et al. Changing patterns of rotavirus strains circulating in Ireland: re-emergence of G2P[4] and identification of novel genotypes in Ireland. J Med Virol 2015; 87:764–773 [View Article][PubMed]
    [Google Scholar]
  8. Cook N, Bridger J, Kendall K, Gomara MI, El-Attar L et al. The zoonotic potential of rotavirus. J Infect 2004; 48:289–302 [View Article][PubMed]
    [Google Scholar]
  9. Martella V, Bányai K, Matthijnssens J, Buonavoglia C, Ciarlet M. Zoonotic aspects of rotaviruses. Vet Microbiol 2010; 140:246–255 [View Article][PubMed]
    [Google Scholar]
  10. Papp H, László B, Jakab F, Ganesh B, De Grazia S et al. Review of group A rotavirus strains reported in swine and cattle. Vet Microbiol 2013; 165:190–199 [View Article][PubMed]
    [Google Scholar]
  11. Yuan L, Stevenson G, Saif LJ. Rotavirus and Reovirus.. In Diseases of Swine, 9th ed. Ames, IA: Blackwell Publishing; 2006 pp. 435–454
    [Google Scholar]
  12. Lachapelle V, Sohal JS, Lambert MC, Brassard J, Fravalo P et al. Genetic diversity of group A rotavirus in swine in Canada. Arch Virol 2014; 159:1771–1779 [View Article][PubMed]
    [Google Scholar]
  13. Martella V, Ciarlet M, Bányai K, Lorusso E, Cavalli A et al. Identification of a novel VP4 genotype carried by a serotype G5 porcine rotavirus strain. Virology 2006; 346:301–311 [View Article][PubMed]
    [Google Scholar]
  14. Matthijnssens J, Ciarlet M, Rahman M, Attoui H, Bányai K et al. Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch Virol 2008; 153:1621–1629 [View Article][PubMed]
    [Google Scholar]
  15. Steyer A, Poljsak-Prijatelj M, Barlic-Maganja D, Jamnikar U, Mijovski JZ et al. Molecular characterization of a new porcine rotavirus P genotype found in an asymptomatic pig in Slovenia. Virology 2007; 359:275–282 [View Article][PubMed]
    [Google Scholar]
  16. Theuns S, Desmarets LM, Heylen E, Zeller M, Dedeurwaerder A et al. Porcine group A rotaviruses with heterogeneous VP7 and VP4 genotype combinations can be found together with enteric bacteria on Belgian swine farms. Vet Microbiol 2014; 172:23–34 [View Article][PubMed]
    [Google Scholar]
  17. Ward LA, Rich ED, Besser TE. Role of maternally derived circulating antibodies in protection of neonatal swine against porcine group A rotavirus. J Infect Dis 1996; 174:276–282 [View Article][PubMed]
    [Google Scholar]
  18. Iturriza-Gómara M, Green J, Brown DW, Ramsay M, Desselberger U et al. Molecular epidemiology of human group A rotavirus infections in the United Kingdom between 1995 and 1998. J Clin Microbiol 2000; 38:4394–4401[PubMed]
    [Google Scholar]
  19. Lennon G, Reidy N, Cryan B, Fanning S, O'Shea H. Changing profile of rotavirus in Ireland: predominance of P[8] and emergence of P[6] and P[9] in mixed infections. J Med Virol 2008; 80:524–530 [View Article][PubMed]
    [Google Scholar]
  20. Miyazaki A, Kuga K, Suzuki T, Kohmoto M, Katsuda K et al. Genetic diversity of group A Rotaviruses associated with repeated outbreaks of diarrhea in a farrow-to-finish farm: identification of a porcine Rotavirus strain bearing a novel VP7 genotype, G26. Vet Res 2011; 42:112 [View Article][PubMed]
    [Google Scholar]
  21. O'Halloran F, Lynch M, Cryan B, O'Shea H, Fanning S. Molecular characterization of rotavirus in Ireland: detection of novel strains circulating in the population. J Clin Microbiol 2000; 38:3370–3374[PubMed]
    [Google Scholar]
  22. Parra GI, Vidales G, Gomez JA, Fernandez FM, Parreño V et al. Phylogenetic analysis of porcine rotavirus in Argentina: increasing diversity of G4 strains and evidence of interspecies transmission. Vet Microbiol 2008; 126:243–250 [View Article][PubMed]
    [Google Scholar]
  23. Da Silva MF, Tort LFL, Gómez MM, Assis RMS, De Mendonça MCL et al. Phylogenetic analysis of VP1, VP2, and VP3 gene segments of genotype G5 group A rotavirus strains circulating in Brazil between 1986 and 2005. Virus Res 2011; 160:381–388 [View Article][PubMed]
    [Google Scholar]
  24. Drewe JA, Hoinville LJ, Cook AJC, Floyd T, Stärk KDC. Evaluation of animal and public health surveillance systems: a systematic review. Epidemiol Infect 2012; 140:575–590 [View Article][PubMed]
    [Google Scholar]
  25. Chandler-Bostock R, Hancox LR, Nawaz S, Watts O, Iturriza-Gomara M et al. Genetic diversity of porcine group A rotavirus strains in the UK. Vet Microbiol 2014; 173:27–37 [View Article][PubMed]
    [Google Scholar]
  26. [Google Scholar]
  27. Will LA, Paul PS, Proescholdt TA, Aktar SN, Flaming KP et al. Evaluation of rotavirus infection and diarrhea in Iowa commercial pigs based on an epidemiologic study of a population represented by diagnostic laboratory cases. J Vet Diagn Invest 1994; 6:416–422 [View Article][PubMed]
    [Google Scholar]
  28. Médici K, Barry A, Alfieri AF, Alfieri AA. Porcine rotavirus groups A, B, and C identified by polymerase chain reaction in a fecal sample collection with inconclusive results by polyacrylamide gel electrophoresis. J Swine Health Prod 2011; 19:146–150
    [Google Scholar]
  29. Rojas M, Manchego SA, Rivera GH, Falcón PN, Ramírez VM et al. Asociación entre rotavirus y la presencia de diarrea en lechones de granjas tecnificadas. Rev Investig Vet Perú 2011; 22:253–260
    [Google Scholar]
  30. Rivas C. Detección y caracterización de rotavirus en cerdos lactantes en la Región Metropoilitana. Tesis de Pregrado Santaigo de Chile: Universidad de Chile; 1983
    [Google Scholar]
  31. Berrios P, Pinochet L, Abalos P, Cuevas L. Presencia de rotavirus en cerdos lactantes con sindrome diarreico. Avances en Medicina Vetereinaria 1989; 4:7–13
    [Google Scholar]
  32. Maes P, Matthijnssens J, Rahman M, Van Ranst M. (editors) RotaC: a web-based tool for the complete genome classification of group A rotaviruses. BMC Microbiol 2009; 9:238 [View Article][PubMed]
    [Google Scholar]
  33. Reinhardt G, Riedmann S, Polette M, Aguilar M, Niedda M. Diarrea neonatal: infección por rotavirus en bovinos y porcinos. Arch Med Vet 1986; 18:23–27
    [Google Scholar]
  34. Dodet B, Heseltine E, Saliou P. [Rotaviruses in human and veterinary medicine]. Sante 1997; 7:195–199 [View Article]
    [Google Scholar]
  35. Dirección Meteorológica de Chile 2001; Estadistica climatologica, Tomo 1 y 2. http://164.77.222.61/climatologia/publicaciones/Estadistica_ClimatologicaI.pdf [accessed 16 October 2016]
  36. Pfeiffer DU, Robinson TP, Stevenson M, Stevens KB, Rogers DJ et al. Spatial Analysis in Epidemiology, 1st ed. Oxford: Oxford University Press; 2008 [Crossref]
    [Google Scholar]
  37. Pybus OG, Suchard MA, Lemey P, Bernardin FJ, Rambaut A et al. Unifying the spatial epidemiology and molecular evolution of emerging epidemics. Proc Natl Acad Sci USA 2012; 109:15066–15071 [View Article][PubMed]
    [Google Scholar]
  38. Miyazaki A, Kuga K, Suzuki T, Tsunemitsu H. Analysis of the excretion dynamics and genotypic characteristics of Rotavirus a during the lives of Pigs raised on farms for Meat production. J Clin Microbiol 2012; 50:2009–2017 [View Article][PubMed]
    [Google Scholar]
  39. Miyazaki A, Kuga K, Suzuki T, Kohmoto M, Katsuda K et al. Annual changes in predominant genotypes of rotavirus A detected in the feces of pigs in various developmental stages raised on a conventional farm. Vet Microbiol 2013; 163:162–166 [View Article][PubMed]
    [Google Scholar]
  40. Matthijnssens J, De Grazia S, Piessens J, Heylen E, Zeller M et al. Multiple reassortment and interspecies transmission events contribute to the diversity of feline, canine and feline/canine-like human group A rotavirus strains. Infect Genet Evol 2011; 11:1396–1406 [View Article][PubMed]
    [Google Scholar]
  41. Trojnar E, Sachsenröder J, Twardziok S, Reetz J, Otto PH et al. Identification of an avian group A Rotavirus containing a novel VP4 gene with a close relationship to those of mammalian Rotaviruses. J Gen Virol 2013; 94:136–142 [View Article][PubMed]
    [Google Scholar]
  42. Collins PJ, Martella V, Sleator RD, Fanning S, O'Shea H. Detection and characterisation of group A rotavirus in asymptomatic piglets in southern Ireland. Arch Virol 2010; 155:1247–1259 [View Article][PubMed]
    [Google Scholar]
  43. Collins PJ, Martella V, Buonavoglia C, O'Shea H. Identification of a G2-like porcine rotavirus bearing a novel VP4 type, P[32]. Vet Res 2010; 41:73–84 [View Article][PubMed]
    [Google Scholar]
  44. Amimo JO, Junga JO, Ogara WO, Vlasova AN, Njahira MN et al. Detection and genetic characterization of porcine group A rotaviruses in asymptomatic pigs in smallholder farms in East Africa: predominance of P[8] genotype resembling human strains. Vet Microbiol 2015; 175:195–210 [View Article][PubMed]
    [Google Scholar]
  45. Heiman EM, Mcdonald SM, Barro M, Taraporewala ZF, Bar-Magen T et al. Group A human rotavirus genomics: evidence that gene constellations are influenced by viral protein interactions. J Virol 2008; 82:11106–11116 [View Article][PubMed]
    [Google Scholar]
  46. Timenetsky MC, Gouvea V, Santos N, Carmona RC, Hoshino Y. A novel human Rotavirus serotype with dual G5-G11 specificity. J Gen Virol 1997; 78:1373–1378 [View Article][PubMed]
    [Google Scholar]
  47. Chan-It W, Khamrin P, Saekhow P, Pantip C, Thongprachum A et al. Multiple combinations of P[13]-like genotype with G3, G4, and G5 in porcine rotaviruses. J Clin Microbiol 2008; 46:1169–1173 [View Article][PubMed]
    [Google Scholar]
  48. Martel-Paradis O, Laurin MA, Martella V, Sohal JS, L’Homme Y. Full-length genome analysis of G2, G9 and G11 porcine group A rotaviruses. Vet Microbiol 2013; 162:94–102 [View Article][PubMed]
    [Google Scholar]
  49. Okadera K, Abe M, Ito N, Morikawa S, Yamasaki A et al. Evidence of natural transmission of group A rotavirus between domestic pigs and wild boars (Sus scrofa) in Japan. Infect Genet Evol 2013; 20:54–60 [View Article][PubMed]
    [Google Scholar]
  50. Burke B, Mccrae MA, Desselberger U. Sequence analysis of two porcine rotaviruses differing in growth in vitro and in pathogenicity: distinct VP4 sequences and conservation of NS53, VP6 and VP7 genes. J Gen Virol 1994; 75:2205–2212 [View Article][PubMed]
    [Google Scholar]
  51. Varghese V, das S, Singh NB, Kojima K, Bhattacharya SK et al. Molecular characterization of a human rotavirus reveals porcine characteristics in most of the genes including VP6 and NSP4. Arch Virol 2004; 149:155–172 [View Article][PubMed]
    [Google Scholar]
  52. Nguyen TA, Hoang LP, Pham LD, Hoang KT, Okitsu S et al. Use of sequence analysis of the VP4 gene to classify recent Vietnamese rotavirus isolates. Clin Microbiol Infect 2008; 14:235–241 [View Article][PubMed]
    [Google Scholar]
  53. Wu FT, Bányai K, Huang JC, Wu HS, Chang FY et al. Diverse origin of P[19] rotaviruses in children with acute diarrhea in Taiwan: detection of novel lineages of the G3, G5, and G9 VP7 genes. J Med Virol 2011; 83:1279–1287 [View Article][PubMed]
    [Google Scholar]
  54. Iturriza-Gómara M, Isherwood B, Desselberger U, Gray J. Reassortment in vivo: driving force for diversity of human rotavirus strains isolated in the United Kingdom between 1995 and 1999. J Virol 2001; 75:3696–3705 [View Article][PubMed]
    [Google Scholar]
  55. Steyer A, Poljsak-Prijatelj M, Barlic-Maganja D, Marin J. Human, porcine and bovine rotaviruses in Slovenia: evidence of interspecies transmission and genome reassortment. J Gen Virol 2008; 89:1690–1698 [View Article][PubMed]
    [Google Scholar]
  56. Watanabe M, Nakagomi T, Koshimura Y, Nakagomi O. Direct evidence for genome segment reassortment between concurrently-circulating human rotavirus strains. Arch Virol 2001; 146:557–570 [View Article][PubMed]
    [Google Scholar]
  57. Samajdar S, Varghese V, Barman P, Ghosh S, Mitra U et al. Changing pattern of human group A rotaviruses: emergence of G12 as an important pathogen among children in eastern India. J Clin Virol 2006; 36:183–188 [View Article][PubMed]
    [Google Scholar]
  58. Ghosh S, Kobayashi N. Whole-genomic analysis of rotavirus strains: current status and future prospects. Future Microbiol 2011; 6:1049–1065 [View Article]
    [Google Scholar]
  59. González AM, Azevedo MS, Jung K, Vlasova A, Zhang W et al. Innate immune responses to human rotavirus in the neonatal gnotobiotic piglet disease model. Immunology 2010; 131:242–256 [View Article][PubMed]
    [Google Scholar]
  60. La Frazia S, Ciucci A, Arnoldi F, Coira M, Gianferretti P et al. Thiazolides, a new class of antiviral agents effective against rotavirus infection, target viral morphogenesis, inhibiting viroplasm formation. J Virol 2013; 87:11096–11106 [View Article][PubMed]
    [Google Scholar]
  61. Roner MR, Sprayberry J, Spinks M, Dhanji S. Antiviral activity obtained from aqueous extracts of the chilean soapbark tree (Quillaja saponaria Molina). J Gen Virol 2007; 88:275–285 [View Article][PubMed]
    [Google Scholar]
  62. Roner MR, Tam KI, Kiesling-Barrager M. Prevention of rotavirus infections in vitro with aqueous extracts of Quillaja Saponaria Molina. Future Med Chem 2010; 2:1083–1097 [View Article][PubMed]
    [Google Scholar]
  63. Tam KI, Roner MR. Characterization of in vivo anti-rotavirus activities of saponin extracts from Quillaja saponaria molina. Antiviral Res 2011; 90:231–241 [View Article][PubMed]
    [Google Scholar]
  64. Herring AJ, Inglis NF, Ojeh CK, Snodgrass DR, Menzies JD. Rapid diagnosis of rotavirus infection by direct detection of viral nucleic acid in silver-stained polyacrylamide gels. J Clin Microbiol 1982; 16:473–477[PubMed]
    [Google Scholar]
  65. Gentsch JR, Glass RI, Woods P, Gouvea V, Gorziglia M et al. Identification of group A rotavirus gene 4 types by polymerase chain reaction. J Clin Microbiol 1992; 30:1365–1373[PubMed]
    [Google Scholar]
  66. Das BK, Gentsch JR, Cicirello HG, Woods PA, Gupta A et al. Characterization of rotavirus strains from newborns in New Delhi, India. J Ciln Microbiol 1994; 32:1820–1822
    [Google Scholar]
  67. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000662
Loading
/content/journal/jgv/10.1099/jgv.0.000662
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error