1887

Abstract

(MCV) is the sole member of the genus and causes a highly prevalent human disease of the skin characterized by the formation of a variable number of lesions that can persist for prolonged periods of time. Two major genotypes, subtype 1 and subtype 2, are recognized, although currently only a single complete genomic sequence corresponding to MCV subtype 1 is available. Using next-generation sequencing techniques, we report the complete genomic sequence of four new MCV isolates, including the first one derived from a subtype 2. Comparisons suggest a relatively distant evolutionary split between both MCV subtypes. Further, our data illustrate concurrent circulation of distinct viruses within a population and reveal the existence of recombination events among them. These results help identify a set of MCV genes with potentially relevant roles in molluscum contagiosum epidemiology and pathogenesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000759
2017-05-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/5/1073.html?itemId=/content/journal/jgv/10.1099/jgv.0.000759&mimeType=html&fmt=ahah

References

  1. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol 2011; 9:244–253 [View Article][PubMed]
    [Google Scholar]
  2. Foulongne V, Sauvage V, Hebert C, Dereure O, Cheval J et al. Human skin microbiota: high diversity of DNA viruses identified on the human skin by high throughput sequencing. PLoS One 2012; 7:e38499 [View Article][PubMed]
    [Google Scholar]
  3. Wylie KM, Mihindukulasuriya KA, Zhou Y, Sodergren E, Storch GA et al. Metagenomic analysis of double-stranded DNA viruses in healthy adults. BMC Biol 2014; 12:71 [View Article][PubMed]
    [Google Scholar]
  4. Oh J, Byrd AL, Deming C, Conlan S, Barnabas B et al. Biogeography and individuality shape function in the human skin metagenome. Nature 2015; 514:59–64 [View Article]
    [Google Scholar]
  5. Hannigan GD, Meisel JS, Tyldsley AS, Zheng Q, Hodkinson BP et al. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. MBio 2015; 6:e01578 [View Article][PubMed]
    [Google Scholar]
  6. Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 2008; 319:1096–1100 [View Article][PubMed]
    [Google Scholar]
  7. Lee R, Schwartz RA. Pediatric molluscum contagiosum: reflections on the last challenging poxvirus infection, part 1. Cutis 2010; 86:230–236[PubMed]
    [Google Scholar]
  8. Lee R, Schwartz RA. Pediatric molluscum contagiosum: reflections on the last challenging poxvirus infection, part 2. Cutis 2010; 86:287–292[PubMed]
    [Google Scholar]
  9. Chen X, Anstey AV, Bugert JJ. Molluscum contagiosum virus infection. Lancet Infect Dis 2013; 13:877–888 [View Article][PubMed]
    [Google Scholar]
  10. Sherwani S, Farleigh L, Agarwal N, Loveless S, Robertson N et al. Seroprevalence of molluscum contagiosum virus in German and UK populations. PLoS One 2014; 9:e88734 [View Article][PubMed]
    [Google Scholar]
  11. Schwartz JJ, Myskowski PL. Molluscum contagiosum in patients with human immunodeficiency virus infection. A review of twenty-seven patients. J Am Acad Dermatol 1992; 27:583–588[PubMed] [CrossRef]
    [Google Scholar]
  12. Mccollum AM, Holman RC, Hughes CM, Mehal JM, Folkema AM et al. Molluscum contagiosum in a pediatric American Indian population: incidence and risk factors. PLoS One 2014; 9:e103419 [View Article][PubMed]
    [Google Scholar]
  13. Shisler JL. Immune evasion strategies of molluscum contagiosum virus. In Maramorosch K, Mettenleiter TC. (editors) Advances in Virus Research vol. 92 Elsevier Inc; 2015 pp. 201–252
    [Google Scholar]
  14. Lüttichau HR, Stine J, Boesen TP, Johnsen AH, Chantry D et al. A highly selective CC chemokine receptor (CCR)8 antagonist encoded by the poxvirus molluscum contagiosum. J Exp Med 2000; 191:171–180 [View Article][PubMed]
    [Google Scholar]
  15. Damon I, Murphy PM, Moss B. Broad spectrum chemokine antagonistic activity of a human poxvirus chemokine homolog. Proc Natl Acad Sci USA 1998; 95:6403–6407 [View Article][PubMed]
    [Google Scholar]
  16. Xiang Y, Moss B. IL-18 binding and inhibition of interferon gamma induction by human poxvirus-encoded proteins. Proc Natl Acad Sci USA 1999; 96:11537–11542 [View Article][PubMed]
    [Google Scholar]
  17. Shisler JL, Moss B. Molluscum contagiosum virus inhibitors of apoptosis: the MC159 v-FLIP protein blocks Fas-induced activation of procaspases and degradation of the related MC160 protein. Virology 2001; 282:14–25 [View Article][PubMed]
    [Google Scholar]
  18. Hu S, Vincenz C, Buller M, Dixit VM. A novel family of viral death effector domain-containing molecules that inhibit both CD-95- and tumor necrosis factor receptor-1-induced apoptosis. J Biol Chem 1997; 272:9621–9624[PubMed] [CrossRef]
    [Google Scholar]
  19. Randall CM, Biswas S, Selen CV, Shisler JL. Inhibition of interferon gene activation by death-effector domain-containing proteins from the molluscum contagiosum virus. Proc Natl Acad Sci USA 2014; 111:E265E272 [View Article][PubMed]
    [Google Scholar]
  20. Challa S, Woelfel M, Guildford M, Moquin D, Chan FK. Viral cell death inhibitor MC159 enhances innate immunity against vaccinia virus infection. J Virol 2010; 84:10467–10476 [View Article][PubMed]
    [Google Scholar]
  21. Chaudhary PM, Jasmin A, Eby MT, Hood L. Modulation of the NF-kappa B pathway by virally encoded death effector domains-containing proteins. Oncogene 1999; 18:5738–5746 [View Article][PubMed]
    [Google Scholar]
  22. Randall CM, Jokela JA, Shisler JL. The MC159 protein from the molluscum contagiosum poxvirus inhibits NF-κB activation by interacting with the Iκb kinase complex. J Immunol 2012; 188:2371–2379 [View Article][PubMed]
    [Google Scholar]
  23. Fife KH, Whitfeld M, Faust H, Goheen MP, Bryan J et al. Growth of molluscum contagiosum virus in a human foreskin xenograft model. Virology 1996; 226:95–101 [View Article][PubMed]
    [Google Scholar]
  24. Mendez-Rios JD, Yang Z, Erlandson KJ, Cohen JI, Martens CA et al. Molluscum contagiosum virus transcriptome in abortively infected cultured cells and a human skin lesion. J Virol 2016; 90:4469–4480 [View Article][PubMed]
    [Google Scholar]
  25. Nakamura J, Muraki Y, Yamada M, Hatano Y, Nii S. Analysis of molluscum contagiosum virus genomes isolated in Japan. J Med Virol 1995; 46:339–348 [View Article][PubMed]
    [Google Scholar]
  26. Porter CD, Archard LC. Characterisation by restriction mapping of three subtypes of molluscum contagiosum virus. J Med Virol 1992; 38:1–6 [View Article][PubMed]
    [Google Scholar]
  27. Scholz J, Rösen-Wolff A, Bugert J, Reisner H, White MI et al. Epidemiology of molluscum contagiosum using genetic analysis of the viral DNA. J Med Virol 1989; 27:87–90 [View Article][PubMed]
    [Google Scholar]
  28. Thompson CH, de Zwart-Steffe RT, Donovan B. Clinical and molecular aspects of molluscum contagiosum infection in HIV-1 positive patients. Int J STD AIDS 1992; 3:101–106 [View Article][PubMed]
    [Google Scholar]
  29. Thompson CH, de Zwart-Steffe RT, Biggs IM. Molecular epidemiology of Australian isolates of molluscum contagiosum. J Med Virol 1990; 32:1–9 [View Article][PubMed]
    [Google Scholar]
  30. Yamashita H, Uemura T, Kawashima M. Molecular epidemiologic analysis of Japanese patients with molluscum contagiosum. Int J Dermatol 1996; 35:99–105 [View Article][PubMed]
    [Google Scholar]
  31. Senkevich TG, Bugert JJ, Sisler JR, Koonin EV, Darai G et al. Genome sequence of a human tumorigenic poxvirus: prediction of specific host response-evasion genes. Science 1996; 273:813–816 [View Article][PubMed]
    [Google Scholar]
  32. Senkevich TG, Koonin EV, Bugert JJ, Darai G, Moss B. The genome of molluscum contagiosum virus: analysis and comparison with other poxviruses. Virology 1997; 233:19–42 [View Article][PubMed]
    [Google Scholar]
  33. Moratilla M, Agromayor M, Nuñez A, Funes JM, Varas AJ et al. A random DNA sequencing, computer-based approach for the generation of a gene map of molluscum contagiosum virus. Virus Genes 1997; 14:73–80[PubMed] [CrossRef]
    [Google Scholar]
  34. Hošnjak L, Kocjan BJ, Kušar B, Seme K, Poljak M. Rapid detection and typing of molluscum contagiosum virus by FRET-based real-time PCR. J Virol Methods 2013; 187:431–434 [View Article][PubMed]
    [Google Scholar]
  35. López-Bueno A, Mavian C, Labella AM, Castro D, Borrego JJ et al. Concurrence of Iridovirus, polyomavirus, and a unique member of a new group of fish papillomaviruses in lymphocystis disease-affected gilthead sea bream. J Virol 2016; 90:8768–8779 [View Article][PubMed]
    [Google Scholar]
  36. Trama JP, Adelson ME, Mordechai E. Identification and genotyping of molluscum contagiosum virus from genital swab samples by real-time PCR and Pyrosequencing. J Clin Virol 2007; 40:325–329 [View Article][PubMed]
    [Google Scholar]
  37. Esposito JJ, Sammons SA, Frace AM, Osborne JD, Olsen-Rasmussen M et al. Genome sequence diversity and clues to the evolution of variola (smallpox) virus. Science 2006; 313:807–812 [View Article][PubMed]
    [Google Scholar]
  38. Lourie B, Nakano JH, Kemp GE, Setzer HW. Isolation of poxvirus from an African rodent. J Infect Dis 1975; 132:677–681 [View Article][PubMed]
    [Google Scholar]
  39. Tcherepanov V, Ehlers A, Upton C. Genome Annotation Transfer Utility (GATU): rapid annotation of viral genomes using a closely related reference genome. BMC Genomics 2006; 7:150 [View Article][PubMed]
    [Google Scholar]
  40. Carver T, Harris SR, Berriman M, Parkhill J, Mcquillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012; 28:464–469 [View Article][PubMed]
    [Google Scholar]
  41. Yang Z, Moss B. Decoding poxvirus genome. Oncotarget 2015; 6:28513–28514 [View Article][PubMed]
    [Google Scholar]
  42. Howard AR, Moss B. Formation of orthopoxvirus cytoplasmic A-type inclusion bodies and embedding of virions are dynamic processes requiring microtubules. J Virol 2012; 86:5905–5914 [View Article][PubMed]
    [Google Scholar]
  43. Brady G, Haas DA, Farrell PJ, Pichlmair A, Bowie AG. Poxvirus protein MC132 from molluscum contagiosum virus inhibits NF-B activation by targeting p65 for degradation. J Virol 2015; 89:8406–8415 [View Article][PubMed]
    [Google Scholar]
  44. Mohamed MR, Rahman MM, Rice A, Moyer RW, Werden SJ et al. Cowpox virus expresses a novel ankyrin repeat NF-kappaB inhibitor that controls inflammatory cell influx into virus-infected tissues and is critical for virus pathogenesis. J Virol 2009; 83:9223–9236 [View Article][PubMed]
    [Google Scholar]
  45. Rubio D, Xu RH, Remakus S, Krouse TE, Truckenmiller ME et al. Crosstalk between the type 1 interferon and nuclear factor kappa B pathways confers resistance to a lethal virus infection. Cell Host Microbe 2013; 13:701–710 [View Article][PubMed]
    [Google Scholar]
  46. Alzhanova D, Hammarlund E, Reed J, Meermeier E, Rawlings S et al. T cell inactivation by poxviral B22 family proteins increases viral virulence. PLoS Pathog 2014; 10:e1004123 [View Article][PubMed]
    [Google Scholar]
  47. Etherington GJ, Dicks J, Roberts IN. Recombination Analysis Tool (RAT): a program for the high-throughput detection of recombination. Bioinformatics 2005; 21:278–281 [View Article][PubMed]
    [Google Scholar]
  48. Xiang Y, Moss B. Correspondence of the functional epitopes of poxvirus and human interleukin-18-binding proteins. J Virol 2001; 75:9947–9954 [View Article][PubMed]
    [Google Scholar]
  49. Born TL, Morrison LA, Esteban DJ, Vandenbos T, Thebeau LG et al. A poxvirus protein that binds to and inactivates IL-18, and inhibits NK cell response. J Immunol 2000; 164:3246–3254 [View Article][PubMed]
    [Google Scholar]
  50. Reading PC, Smith GL. Vaccinia virus interleukin-18-binding protein promotes virulence by reducing gamma interferon production and natural killer and T-cell activity. J Virol 2003; 77:9960–9968 [View Article][PubMed]
    [Google Scholar]
  51. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  52. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012; 61:1061–1067 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000759
Loading
/content/journal/jgv/10.1099/jgv.0.000759
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error