1887

Abstract

White bream virus (WBV), a poorly characterized plus-strand RNA virus infecting freshwater fish of the Cyprinidae family, is the prototype species of the genus Bafinivirus in the subfamily Torovirinae (family Coronaviridae, order Nidovirales). In common with other nidoviruses featuring >20 kilobase genomes, bafiniviruses have been predicted to encode an exoribonuclease (ExoN) in their replicase gene. Here, we used information on the substrate specificity of bafinivirus 3C-like proteases to express WBV ExoN in an active form in Escherichia coli. The 374-residue protein displayed robust 3′-to-5′ exoribonuclease activity in the presence of Mg ions and, unlike its coronavirus homologues, did not require a protein cofactor for activity. Characterization of mutant forms of ExoN provided support for predictions on putative active-site and conserved zinc-binding residues. WBV ExoN was revealed to be most active on double-stranded RNA substrates containing one or two non-paired 3′-terminal nucleotides, supporting its presumed role in increasing the fidelity of the bafinivirus RNA-dependent RNA polymerase.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001120
2018-07-30
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/99/9/1253.html?itemId=/content/journal/jgv/10.1099/jgv.0.001120&mimeType=html&fmt=ahah

References

  1. Granzow H, Weiland F, Fichtner D, Schütze H, Karger A et al. Identification and ultrastructural characterization of a novel virus from fish. J Gen Virol 2001; 82:2849–2859 [View Article][PubMed]
    [Google Scholar]
  2. Schütze H, Ulferts R, Schelle B, Bayer S, Granzow H et al. Characterization of White bream virus reveals a novel genetic cluster of nidoviruses. J Virol 2006; 80:11598–11609 [View Article][PubMed]
    [Google Scholar]
  3. Batts WN, Goodwin AE, Winton JR. Genetic analysis of a novel nidovirus from fathead minnows. J Gen Virol 2012; 93:1247–1252 [View Article][PubMed]
    [Google Scholar]
  4. Zhang Q, Standish I, Winters AD, Puzach C, Ulferts R et al. Development and evaluation of reverse transcription loop-mediated isothermal amplification assay for the detection of the fathead minnow nidovirus. J Virol Methods 2014; 202:39–45 [View Article][PubMed]
    [Google Scholar]
  5. de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya AE et al. Family Coronaviridae. In King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ. (editors) Virus Taxonomy Amsterdam: Elsevier; 2012 pp. 806–828
    [Google Scholar]
  6. Bodewes R, Lempp C, Schürch AC, Habierski A, Hahn K et al. Novel divergent nidovirus in a python with pneumonia. J Gen Virol 2014; 95:2480–2485 [View Article][PubMed]
    [Google Scholar]
  7. Stenglein MD, Jacobson ER, Wozniak EJ, Wellehan JF, Kincaid A et al. Ball python nidovirus: a candidate etiologic agent for severe respiratory disease in Python regius. mBio 2014; 5:e01484-14 [View Article][PubMed]
    [Google Scholar]
  8. Weiss M, Steck F, Horzinek MC. Purification and partial characterization of a new enveloped RNA virus (Berne virus). J Gen Virol 1983; 64:1849–1858 [View Article][PubMed]
    [Google Scholar]
  9. Hoet A, Saif LJ. Torovirus pathogenesis and immune responses. In Perlman S, Gallagher T, Snijder EJ. (editors) Nidoviruses Washington, DC: ASM Press; 2008 pp. 351–359
    [Google Scholar]
  10. Siddell SG, Ziebuhr J, Snijder EJ. Coronaviruses, toroviruses, and arteriviruses. In Mahy BWJ, ter Meulen V. (editors) Topley and Wilson's Microbiology and Microbial Infections London: Hodder Arnold; 2005 pp. 823–856
    [Google Scholar]
  11. Masters PS, Perlman S. Coronaviridae. In Knipe DM, Howley PM. (editors) Fields Virology Philadelphia, PA: Lippincott Williams & Wilkins; 2013 pp. 825–858
    [Google Scholar]
  12. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 2015; 1282:1–23 [View Article][PubMed]
    [Google Scholar]
  13. Lehmann KC, Gulyaeva A, Zevenhoven-Dobbe JC, Janssen GM, Ruben M et al. Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses. Nucleic Acids Res 2015; 43:8416–8434 [View Article][PubMed]
    [Google Scholar]
  14. Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM. Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Res 1989; 17:4847–4861 [View Article][PubMed]
    [Google Scholar]
  15. Gorbalenya AE, Koonin EV. Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol 1993; 3:419–429 [View Article]
    [Google Scholar]
  16. Seybert A, Hegyi A, Siddell SG, Ziebuhr J. The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding activities with 5'-to-3' polarity. RNA 2000; 6:1056–1068 [View Article][PubMed]
    [Google Scholar]
  17. Seybert A, Posthuma CC, van Dinten LC, Snijder EJ, Gorbalenya AE et al. A complex zinc finger controls the enzymatic activities of nidovirus helicases. J Virol 2005; 79:696–704 [View Article][PubMed]
    [Google Scholar]
  18. van Dinten LC, van Tol H, Gorbalenya AE, Snijder EJ. The predicted metal-binding region of the arterivirus helicase protein is involved in subgenomic mRNA synthesis, genome replication, and virion biogenesis. J Virol 2000; 74:5213–5223 [View Article][PubMed]
    [Google Scholar]
  19. Chen Y, Cai H, Pan J, Xiang N, Tien P et al. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc Natl Acad Sci USA 2009; 106:3484–3489 [View Article][PubMed]
    [Google Scholar]
  20. Ma Y, Wu L, Shaw N, Gao Y, Wang J et al. Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proc Natl Acad Sci USA 2015; 112:9436–9441 [View Article][PubMed]
    [Google Scholar]
  21. Nga PT, Parquet MC, Lauber C, Parida M, Nabeshima T et al. Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes. PLoS Pathog 2011; 7:e1002215 [View Article][PubMed]
    [Google Scholar]
  22. Zirkel F, Roth H, Kurth A, Drosten C, Ziebuhr J et al. Identification and characterization of genetically divergent members of the newly established family Mesoniviridae. J Virol 2013; 87:6346–6358 [View Article][PubMed]
    [Google Scholar]
  23. Lauber C, Ziebuhr J, Junglen S, Drosten C, Zirkel F et al. Mesoniviridae: a proposed new family in the order Nidovirales formed by a single species of mosquito-borne viruses. Arch Virol 2012; 157:1623–1628 [View Article][PubMed]
    [Google Scholar]
  24. Blanck S, Ziebuhr J. Proteolytic processing of mesonivirus replicase polyproteins by the viral 3C-like protease. J Gen Virol 2016; 97:1439–1445 [View Article][PubMed]
    [Google Scholar]
  25. Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 2003; 331:991–1004 [View Article][PubMed]
    [Google Scholar]
  26. Steitz TA, Steitz JA. A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci USA 1993; 90:6498–6502 [View Article][PubMed]
    [Google Scholar]
  27. Beese LS, Steitz TA. Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J 1991; 10:25–33[PubMed]
    [Google Scholar]
  28. Minskaia E, Hertzig T, Gorbalenya AE, Campanacci V, Cambillau C et al. Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci USA 2006; 103:5108–5113 [View Article][PubMed]
    [Google Scholar]
  29. Eckerle LD, Becker MM, Halpin RA, Li K, Venter E et al. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog 2010; 6:e1000896 [View Article][PubMed]
    [Google Scholar]
  30. Eckerle LD, Lu X, Sperry SM, Choi L, Denison MR. High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. J Virol 2007; 81:12135–12144 [View Article][PubMed]
    [Google Scholar]
  31. Smith EC, Blanc H, Surdel MC, Vignuzzi M, Denison MR. Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. PLoS Pathog 2013; 9:e1003565 [View Article][PubMed]
    [Google Scholar]
  32. Becares M, Pascual-Iglesias A, Nogales A, Sola I, Enjuanes L et al. Mutagenesis of coronavirus nsp14 reveals its potential role in modulation of the innate immune response. J Virol 2016; 90:5399–5414 [View Article][PubMed]
    [Google Scholar]
  33. Bouvet M, Imbert I, Subissi L, Gluais L, Canard B et al. RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proc Natl Acad Sci USA 2012; 109:9372–9377 [View Article][PubMed]
    [Google Scholar]
  34. Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. Nidovirales: evolving the largest RNA virus genome. Virus Res 2006; 117:17–37 [View Article][PubMed]
    [Google Scholar]
  35. Smith EC, Sexton NR, Denison MR. Thinking outside the triangle: replication fidelity of the largest RNA viruses. Annu Rev Virol 2014; 1:111–132 [View Article][PubMed]
    [Google Scholar]
  36. Ulferts R, Ziebuhr J. Nidovirus ribonucleases: structures and functions in viral replication. RNA Biol 2011; 8:295–304 [View Article][PubMed]
    [Google Scholar]
  37. Lauber C, Goeman JJ, Parquet MC, Nga PT, Snijder EJ et al. The footprint of genome architecture in the largest genome expansion in RNA viruses. PLoS Pathog 2013; 9:e1003500 [View Article][PubMed]
    [Google Scholar]
  38. Case JB, Li Y, Elliott R, Lu X, Graepel KW et al. Murine hepatitis virus nsp14 exoribonuclease activity is required for resistance to innate immunity. J Virol 2018; 92:e01531-17 [View Article][PubMed]
    [Google Scholar]
  39. Ulferts R, Mettenleiter TC, Ziebuhr J. Characterization of Bafinivirus main protease autoprocessing activities. J Virol 2011; 85:1348–1359 [View Article][PubMed]
    [Google Scholar]
  40. Zuo Y, Deutscher MP. Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 2001; 29:1017–1026 [View Article][PubMed]
    [Google Scholar]
  41. Bouvet M, Lugari A, Posthuma CC, Zevenhoven JC, Bernard S et al. Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes. J Biol Chem 2014; 289:25783–25796 [View Article][PubMed]
    [Google Scholar]
  42. Smith EC, Case JB, Blanc H, Isakov O, Shomron N et al. Mutations in coronavirus nonstructural protein 10 decrease virus replication fidelity. J Virol 2015; 89:6418–6426 [View Article][PubMed]
    [Google Scholar]
  43. Snijder EJ, Decroly E, Ziebuhr J. The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv Virus Res 2016; 96:59–126 [View Article][PubMed]
    [Google Scholar]
  44. Ferron F, Subissi L, Silveira de Morais AT, Le NTT, Sevajol M et al. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proc Natl Acad Sci USA 2018; 115:E162E171 [View Article][PubMed]
    [Google Scholar]
  45. Subissi L, Posthuma CC, Collet A, Zevenhoven-Dobbe JC, Gorbalenya AE et al. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc Natl Acad Sci USA 2014; 111:E3900E3909 [View Article][PubMed]
    [Google Scholar]
  46. Deng Z, Lehmann KC, Li X, Feng C, Wang G et al. Structural basis for the regulatory function of a complex zinc-binding domain in a replicative arterivirus helicase resembling a nonsense-mediated mRNA decay helicase. Nucleic Acids Res 2014; 42:3464–3477 [View Article][PubMed]
    [Google Scholar]
  47. Hao W, Wojdyla JA, Zhao R, Han R, das R et al. Crystal structure of Middle East respiratory syndrome coronavirus helicase. PLoS Pathog 2017; 13:e1006474 [View Article][PubMed]
    [Google Scholar]
  48. Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res 1989; 17:4713–4730 [View Article][PubMed]
    [Google Scholar]
  49. Seybert A, van Dinten LC, Snijder EJ, Ziebuhr J. Biochemical characterization of the equine arteritis virus helicase suggests a close functional relationship between arterivirus and coronavirus helicases. J Virol 2000; 74:9586–9593 [View Article][PubMed]
    [Google Scholar]
  50. Ivanov KA, Thiel V, Dobbe JC, van der Meer Y, Snijder EJ et al. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol 2004; 78:5619–5632 [View Article][PubMed]
    [Google Scholar]
  51. Bhardwaj K, Guarino L, Kao CC. The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor. J Virol 2004; 78:12218–12224 [View Article][PubMed]
    [Google Scholar]
  52. Ivanov KA, Hertzig T, Rozanov M, Bayer S, Thiel V et al. Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proc Natl Acad Sci USA 2004; 101:12694–12699 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001120
Loading
/content/journal/jgv/10.1099/jgv.0.001120
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error