NSP1 of human rotaviruses commonly inhibits NF-κB signalling by inducing β-TrCP degradation Di Fiore, Izabel J. M. and Pane, Jessica A. and Holloway, Gavan and Coulson, Barbara S.,, 96, 1768-1776 (2015), doi = https://doi.org/10.1099/vir.0.000093, publicationName = Microbiology Society, issn = 0022-1317, abstract= Rotavirus is a leading cause of severe gastroenteritis in infants worldwide. Rotavirus nonstructural protein 1 (NSP1) is a virulence factor that inhibits innate host immune responses. NSP1 from some rotaviruses targets host interferon response factors (IRFs), leading to inhibition of type I interferon expression. A few rotaviruses encode an NSP1 that inhibits the NF-κB pathway by targeting β-TrCP, a protein required for IκB degradation and NF-κB activation. Available evidence suggests that these NSP1 properties involve proteosomal degradation of target proteins. We show here that NSP1 from several human rotaviruses and porcine rotavirus CRW-8 inhibits the NF-κB pathway, but cannot degrade IRF3. Furthermore, β-TrCP levels were much reduced in cells infected with these rotaviruses. This provides strong evidence that β-TrCP degradation is required for NF-κB pathway inhibition by NSP1 and demonstrates the relevance of β-TrCP degradation to rotavirus infection. C-terminal regions of NSP1, including a serine-containing motif resembling the β-TrCP recognition motif of IκB, were required for NF-κB inhibition. CRW-8 infection of HT-29 intestinal epithelial cells induced significant levels of IFN-β and CCL5 but not IL-8. This contrasts with monkey rotavirus SA11-4F, whose NSP1 inhibits IRF3 but not NF-κB. Substantial amounts of IL-8 but not IFN-β or CCL5 were secreted from HT-29 cells infected with SA11-4F. Our results show that human rotaviruses commonly inhibit the NF-κB pathway by degrading β-TrCP and thus stabilizing IκB. They suggest that NSP1 plays an important role during human rotavirus infection by inhibiting the expression of NF-κB-dependent cytokines, such as IL-8., language=, type=