1887

Abstract

The 5′ leader region of the human immunodeficiency virus 1 (HIV-1) RNA genome contains the major 5′ splice site (ss) that is used in the production of the many spliced viral RNAs. This splice–donor (SD) region can fold into a stable stem–loop structure and the thermodynamic stability of this RNA hairpin influences splicing efficiency. In addition, splicing may be modulated by binding of splicing regulatory (SR) proteins, in particular SF2/ASF (SRSF1), SC35 (SRSF2), SRp40 (SRSF5) and SRp55 (SRSF6), to sequence elements in the SD region. The role of RNA structure and SR protein binding in splicing control was previously studied by functional analysis of mutant SD sequences. The interpretation of these studies was complicated by the fact that most mutations simultaneously affect both structure and sequence elements. We therefore tried to disentangle the contribution of these two variables by designing more precise SD region mutants with a single effect on either the sequence or the structure. The current analysis indicates that HIV-1 splicing at the major 5′ss is modulated by both the stability of the local RNA structure and the binding of splicing regulatory proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000122
2015-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/7/1906.html?itemId=/content/journal/jgv/10.1099/vir.0.000122&mimeType=html&fmt=ahah

References

  1. Abbink T.E., Berkhout B. (2008). RNA structure modulates splicing efficiency at the human immunodeficiency virus type 1 major splice donorJ Virol 8230903098 [View Article][PubMed]. [Google Scholar]
  2. Asang C., Erkelenz S., Schaal H. (2012). The HIV-1 major splice donor D1 is activated by splicing enhancer elements within the leader region and the p17-inhibitory sequenceVirology 432133145 [View Article][PubMed]. [Google Scholar]
  3. Bakkour N., Lin Y.L., Maire S., Ayadi L., Mahuteau-Betzer F., Nguyen C.H., Mettling C., Portales P., Grierson D., other authors. (2007). Small-molecule inhibition of HIV pre-mRNA splicing as a novel antiretroviral therapy to overcome drug resistancePLoS Pathog 315301539[PubMed].[CrossRef] [Google Scholar]
  4. Berkhout B., Arts K., Abbink T.E. (2011). Ribosomal scanning on the 5′-untranslated region of the human immunodeficiency virus RNA genomeNucleic Acids Res 3952325244 [View Article][PubMed]. [Google Scholar]
  5. Buratti E., Baralle F.E. (2004). Influence of RNA secondary structure on the pre-mRNA splicing processMol Cell Biol 241050510514 [View Article][PubMed]. [Google Scholar]
  6. Cartegni L., Wang J., Zhu Z., Zhang M.Q., Krainer A.R. (2003). ESEfinder: A web resource to identify exonic splicing enhancersNucleic Acids Res 3135683571 [View Article][PubMed]. [Google Scholar]
  7. Damgaard C.K., Tange T.O., Kjems J. (2002). hnRNP A1 controls HIV-1 mRNA splicing through cooperative binding to intron and exon splicing silencers in the context of a conserved secondary structureRNA 814011415 [View Article][PubMed]. [Google Scholar]
  8. Das A.T., Zhou X., Vink M., Klaver B., Verhoef K., Marzio G., Berkhout B. (2004). Viral evolution as a tool to improve the tetracycline-regulated gene expression systemJ Biol Chem 2791877618782 [View Article][PubMed]. [Google Scholar]
  9. Das A.T., Harwig A., Berkhout B. (2011). The HIV-1 Tat protein has a versatile role in activating viral transcriptionJ Virol 8595069516 [View Article][PubMed]. [Google Scholar]
  10. Eperon L.P., Graham I.R., Griffiths A.D., Eperon I.C. (1988). Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase?Cell 54393401 [View Article][PubMed]. [Google Scholar]
  11. Erkelenz S., Mueller W.F., Evans M.S., Busch A., Schöneweis K., Hertel K.J., Schaal H. (2013). Position-dependent splicing activation and repression by SR and hnRNP proteins rely on common mechanismsRNA 1996102 [View Article][PubMed]. [Google Scholar]
  12. Freund M., Asang C., Kammler S., Konermann C., Krummheuer J., Hipp M., Meyer I., Gierling W., Theiss S., other authors. (2003). A novel approach to describe a U1 snRNA binding siteNucleic Acids Res 3169636975 [View Article][PubMed]. [Google Scholar]
  13. Goguel V., Wang Y., Rosbash M. (1993). Short artificial hairpins sequester splicing signals and inhibit yeast pre-mRNA splicingMol Cell Biol 1368416848[PubMed]. [Google Scholar]
  14. Graveley B.R. (2000). Sorting out the complexity of SR protein functionsRNA 611971211 [View Article][PubMed]. [Google Scholar]
  15. Groom H.C., Anderson E.C., Lever A.M. (2009). Rev: beyond nuclear exportJ Gen Virol 9013031318 [View Article][PubMed]. [Google Scholar]
  16. Grover A., Houlden H., Baker M., Adamson J., Lewis J., Prihar G., Pickering-Brown S., Duff K., Hutton M. (1999). 5′ splice site mutations in tau associated with the inherited dementia FTDP-17 affect a stem-loop structure that regulates alternative splicing of exon 10J Biol Chem 2741513415143 [View Article][PubMed]. [Google Scholar]
  17. Hartmann L., Theiss S., Niederacher D., Schaal H. (2008). Diagnostics of pathogenic splicing mutations: does bioinformatics cover all bases?Front Biosci 1332523272 [View Article][PubMed]. [Google Scholar]
  18. Horne C., Young P.J. (2009). Is RNA manipulation a viable therapy for spinal muscular atrophy?J Neurol Sci 2872731 [View Article][PubMed]. [Google Scholar]
  19. Hua Y., Vickers T.A., Okunola H.L., Bennett C.F., Krainer A.R. (2008). Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic miceAm J Hum Genet 82834848 [View Article][PubMed]. [Google Scholar]
  20. Hutton M., Lendon C.L., Rizzu P., Baker M., Froelich S., Houlden H., Pickering-Brown S., Chakraverty S., Isaacs A., other authors. (1998). Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17Nature 393702705 [View Article][PubMed]. [Google Scholar]
  21. Ibrahim E.C., Schaal T.D., Hertel K.J., Reed R., Maniatis T. (2005). Serine/arginine-rich protein-dependent suppression of exon skipping by exonic splicing enhancersProc Natl Acad Sci U S A 10250025007 [View Article][PubMed]. [Google Scholar]
  22. Jablonski J.A., Amelio A.L., Giacca M., Caputi M. (2010). The transcriptional transactivator Tat selectively regulates viral splicingNucleic Acids Res 3812491260 [View Article][PubMed]. [Google Scholar]
  23. Jacquenet S., Ropers D., Bilodeau P.S., Damier L., Mougin A., Stoltzfus C.M., Branlant C. (2001). Conserved stem-loop structures in the HIV-1 RNA region containing the A3 3′ splice site and its cis-regulatory element: possible involvement in RNA splicingNucleic Acids Res 29464478 [View Article][PubMed]. [Google Scholar]
  24. Kanopka A., Mühlemann O., Akusjärvi G. (1996). Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNANature 381535538 [View Article][PubMed]. [Google Scholar]
  25. Karn J., Stoltzfus C.M. (2012). Transcriptional and posttranscriptional regulation of HIV-1 gene expressionCold Spring Harb Perspect Med 2a006916 [View Article][PubMed]. [Google Scholar]
  26. Keriel A., Mahuteau-Betzer F., Jacquet C., Plays M., Grierson D., Sitbon M., Tazi J. (2009). Protection against retrovirus pathogenesis by SR protein inhibitorsPLoS ONE 4e4533 [View Article][PubMed]. [Google Scholar]
  27. Leblanc J., Weil J., Beemon K. (2013). Posttranscriptional regulation of retroviral gene expression: primary RNA transcripts play three roles as pre-mRNA, mRNA, and genomic RNAWiley Interdiscip Rev RNA 4567580 [View Article][PubMed]. [Google Scholar]
  28. Lentz J.J., Jodelka F.M., Hinrich A.J., McCaffrey K.E., Farris H.E., Spalitta M.J., Bazan N.G., Duelli D.M., Rigo F., Hastings M.L. (2013). Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse model of human deafnessNat Med 19345350 [View Article][PubMed]. [Google Scholar]
  29. Lim S.R., Hertel K.J. (2001). Modulation of survival motor neuron pre-mRNA splicing by inhibition of alternative 3′ splice site pairingJ Biol Chem 2764547645483 [View Article][PubMed]. [Google Scholar]
  30. Liu H.X., Goodall G.J., Kole R., Filipowicz W. (1995). Effects of secondary structure on pre-mRNA splicing: hairpins sequestering the 5′ but not the 3′ splice site inhibit intron processing in Nicotiana plumbaginifolia EMBO J 14377388[PubMed]. [Google Scholar]
  31. Long J.C., Caceres J.F. (2009). The SR protein family of splicing factors: master regulators of gene expressionBiochem J 4171527 [View Article][PubMed]. [Google Scholar]
  32. Mandal D., Feng Z., Stoltzfus C.M. (2010). Excessive RNA splicing and inhibition of HIV-1 replication induced by modified U1 small nuclear RNAsJ Virol 841279012800 [View Article][PubMed]. [Google Scholar]
  33. McManus C.J., Graveley B.R. (2011). RNA structure and the mechanisms of alternative splicingCurr Opin Genet Dev 21373379 [View Article][PubMed]. [Google Scholar]
  34. Mikaelian I., Sergeant A. (1992). A general and fast method to generate multiple site directed mutationsNucleic Acids Res 20376 [View Article][PubMed]. [Google Scholar]
  35. Miyajima H., Miyaso H., Okumura M., Kurisu J., Imaizumi K. (2002). Identification of a cis-acting element for the regulation of SMN exon 7 splicingJ Biol Chem 2772327123277 [View Article][PubMed]. [Google Scholar]
  36. Mueller N., van Bel N., Berkhout B., Das A.T. (2014). HIV-1 splicing at the major splice donor site is restricted by RNA structureVirology 468-470609620 [View Article][PubMed]. [Google Scholar]
  37. Peacey E., Rodriguez L., Liu Y., Wolfe M.S. (2012). Targeting a pre-mRNA structure with bipartite antisense molecules modulates tau alternative splicingNucleic Acids Res 4098369849 [View Article][PubMed]. [Google Scholar]
  38. Pollom E., Dang K.K., Potter E.L., Gorelick R.J., Burch C.L., Weeks K.M., Swanstrom R. (2013). Comparison of SIV and HIV-1 genomic RNA structures reveals impact of sequence evolution on conserved and non-conserved structural motifsPLoS Pathog 9e1003294 [View Article][PubMed]. [Google Scholar]
  39. Ruijter J.M., Thygesen H.H., Schoneveld O.J., Das A.T., Berkhout B., Lamers W.H. (2006). Factor correction as a tool to eliminate between-session variation in replicate experiments: application to molecular biology and retrovirologyRetrovirology 32 [View Article][PubMed]. [Google Scholar]
  40. Schaub M.C., Lopez S.R., Caputi M. (2007). Members of the heterogeneous nuclear ribonucleoprotein H family activate splicing of an HIV-1 splicing substrate by promoting formation of ATP-dependent spliceosomal complexesJ Biol Chem 2821361713626 [View Article][PubMed]. [Google Scholar]
  41. Shepard P.J., Hertel K.J. (2008). Conserved RNA secondary structures promote alternative splicingRNA 1414631469 [View Article][PubMed]. [Google Scholar]
  42. Singh N.K., Singh N.N., Androphy E.J., Singh R.N. (2006). Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intronMol Cell Biol 2613331346 [View Article][PubMed]. [Google Scholar]
  43. Singh N.N., Singh R.N., Androphy E.J. (2007). Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genesNucleic Acids Res 35371389 [View Article][PubMed]. [Google Scholar]
  44. Smith P.J., Zhang C., Wang J., Chew S.L., Zhang M.Q., Krainer A.R. (2006). An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancersHum Mol Genet 1524902508 [View Article][PubMed]. [Google Scholar]
  45. Solnick D. (1985). Alternative splicing caused by RNA secondary structureCell 43667676 [View Article][PubMed]. [Google Scholar]
  46. Soret J., Bakkour N., Maire S., Durand S., Zekri L., Gabut M., Fic W., Divita G., Rivalle C., other authors. (2005). Selective modification of alternative splicing by indole derivatives that target serine-arginine-rich protein splicing factorsProc Natl Acad Sci U S A 10287648769 [View Article][PubMed]. [Google Scholar]
  47. Spillantini M.G., Murrell J.R., Goedert M., Farlow M.R., Klug A., Ghetti B. (1998). Mutation in the tau gene in familial multiple system tauopathy with presenile dementiaProc Natl Acad Sci U S A 9577377741 [View Article][PubMed]. [Google Scholar]
  48. Stoltzfus C.M. (2009). Chapter 1. Regulation of HIV-1 alternative RNA splicing and its role in virus replicationAdv Virus Res 74140 [View Article][PubMed]. [Google Scholar]
  49. Stoltzfus C.M., Madsen J.M. (2006). Role of viral splicing elements and cellular RNA binding proteins in regulation of HIV-1 alternative RNA splicingCurr HIV Res 44355 [View Article][PubMed]. [Google Scholar]
  50. Tange T.O., Damgaard C.K., Guth S., Valcárcel J., Kjems J. (2001). The hnRNP A1 protein regulates HIV-1 tat splicing via a novel intron silencer elementEMBO J 2057485758 [View Article][PubMed]. [Google Scholar]
  51. Wang Z., Burge C.B. (2008). Splicing regulation: from a parts list of regulatory elements to an integrated splicing codeRNA 14802813 [View Article][PubMed]. [Google Scholar]
  52. Wang E., Mueller W.F., Hertel K.J., Cambi F. (2011). G Run-mediated recognition of proteolipid protein and DM20 5′ splice sites by U1 small nuclear RNA is regulated by context and proximity to the splice siteJ Biol Chem 28640594071 [View Article][PubMed]. [Google Scholar]
  53. Warf M.B., Berglund J.A. (2010). Role of RNA structure in regulating pre-mRNA splicingTrends Biochem Sci 35169178 [View Article][PubMed]. [Google Scholar]
  54. Zahler A.M., Damgaard C.K., Kjems J., Caputi M. (2004). SC35 and heterogeneous nuclear ribonucleoprotein A/B proteins bind to a juxtaposed exonic splicing enhancer/exonic splicing silencer element to regulate HIV-1 tat exon 2 splicingJ Biol Chem 2791007710084 [View Article][PubMed]. [Google Scholar]
  55. Zhou Z., Fu X.D. (2013). Regulation of splicing by SR proteins and SR protein-specific kinasesChromosoma 122191207 [View Article][PubMed]. [Google Scholar]
  56. Zuker M. (2003). Mfold web server for nucleic acid folding and hybridization predictionNucleic Acids Res 3134063415 [View Article][PubMed]. [Google Scholar]
  57. Zychlinski D., Erkelenz S., Melhorn V., Baum C., Schaal H., Bohne J. (2009). Limited complementarity between U1 snRNA and a retroviral 5′ splice site permits its attenuation via RNA secondary structureNucleic Acids Res 3774297440 [View Article][PubMed]. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000122
Loading
/content/journal/jgv/10.1099/vir.0.000122
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error