1887

Abstract

Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an ‘end-less’ state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is increasing evidence that HSV-1 and VZV latency is epigenetically regulated. models that permit pathway analysis and identification of both epigenetic modulations and global transcriptional mechanisms of HSV-1 and VZV latency hold much promise for our future understanding in this complex area. This review summarizes the molecular biology of HSV-1 and VZV latency and reactivation, and also presents future directions for study.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000128
2015-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/7/1581.html?itemId=/content/journal/jgv/10.1099/vir.0.000128&mimeType=html&fmt=ahah

References

  1. Abendroth A., Lin I., Slobedman B., Ploegh H., Arvin A.M. (2001). Varicella-zoster virus retains major histocompatibility complex class I proteins in the Golgi compartment of infected cellsJ Virol 7548784888.[CrossRef] [Google Scholar]
  2. Abmayr S.M., Feldman L.D., Roeder R.G. (1985). In vitro stimulation of specific RNA polymerase II-mediated transcription by the pseudorabies virus immediate early proteinCell 43821829.[CrossRef] [Google Scholar]
  3. Aggarwal A., Miranda-Saksena M., Boadle R.A., Kelly B.J., Diefenbach R.J., Alam W., Cunningham A.L. (2012). Ultrastructural visualization of individual tegument protein dissociation during entry of herpes simplex virus 1 into human and rat dorsal root ganglion neuronsJ Virol 8661236137.[CrossRef] [Google Scholar]
  4. Allen S.J., Hamrah P., Gate D., Mott K.R., Mantopoulos D., Zheng L., Town T., Jones C., von Andrian U.H., other authors. (2011). The role of LAT in increased CD8+T cell exhaustion in trigeminal ganglia of mice latently infected with herpes simplex virus 1J Virol 8541844197.[CrossRef] [Google Scholar]
  5. Allen S.J., Rhode-Kurnow A., Mott K.R., Jiang X., Carpenter D., Rodriguez-Barbosa J.I., Jones C., Wechsler S.L., Ware C.F., Ghiasi H. (2014). Interactions between herpesvirus entry mediator (TNFRSF14) and latency-associated transcript during herpes simplex virus 1 latencyJ Virol 8819611971.[CrossRef] [Google Scholar]
  6. Ambagala A.P., Cohen J.I. (2007). Varicella-zoster virus IE63, a major viral latency protein, is required to inhibit the alpha interferon-induced antiviral responseJ Virol 8178447851.[CrossRef] [Google Scholar]
  7. Ambagala A.P., Bosma T., Ali M.A., Poustovoitov M., Chen J.J., Gershon M.D., Adams P.D., Cohen J.I. (2009). Varicella-zoster virus immediate-early 63 protein interacts with human antisilencing function 1 protein and alters its ability to bind histones H3.1 and H3.3J Virol 83200209.[CrossRef] [Google Scholar]
  8. Amelio A.L., Giordani N.V., Kubat N.J., O'neil J.E., Bloom D.C. (2006a). Deacetylation of the herpes simplex virus type 1 latency-associated transcript (LAT) enhancer and a decrease in LAT abundance precede an increase in ICP0 transcriptional permissiveness at early times postexplantJ Virol 8020632068.[CrossRef] [Google Scholar]
  9. Amelio A.L., McAnany P.K., Bloom D.C. (2006b). A chromatin insulator-like element in the herpes simplex virus type 1 latency-associated transcript region binds CCCTC-binding factor and displays enhancer-blocking and silencing activitiesJ Virol 8023582368.[CrossRef] [Google Scholar]
  10. Antinone S.E., Smith G.A. (2010). Retrograde axon transport of herpes simplex virus and pseudorabies virus: a live-cell comparative analysisJ Virol 8415041512.[CrossRef] [Google Scholar]
  11. Azarkh Y., Bos N., Gilden D., Cohrs R.J. (2012). Human trigeminal ganglionic explants as a model to study alphaherpesvirus reactivationJ Neurovirol 18456461.[CrossRef] [Google Scholar]
  12. Baird N.L., Bowlin J.L., Cohrs R.J., Gilden D., Jones K.L. (2014a). Comparison of varicella-zoster virus RNA sequences in human neurons and fibroblastsJ Virol 8858775880.[CrossRef] [Google Scholar]
  13. Baird N.L., Bowlin J.L., Yu X., Jonjić S., Haas J., Cohrs R.J., Gilden D. (2014b). Varicella zoster virus DNA does not accumulate in infected human neuronsVirology 458-45913.[CrossRef] [Google Scholar]
  14. Baringer J.R., Swoveland P. (1973). Recovery of herpes-simplex virus from human trigeminal ganglionsN Engl J Med 288648650.[CrossRef] [Google Scholar]
  15. Bastian F.O., Rabson A.S., Yee C.L., Tralka T.S. (1972). Herpesvirus hominis: isolation from human trigeminal ganglionScience 178306307.[CrossRef] [Google Scholar]
  16. Batterson W., Roizman B. (1983). Characterization of the herpes simplex virion-associated factor responsible for the induction of alpha genesJ Virol 46371377. [Google Scholar]
  17. Bertke A.S., Swanson S.M., Chen J., Imai Y., Kinchington P.R., Margolis T.P. (2011). A5-positive primary sensory neurons are nonpermissive for productive infection with herpes simplex virus 1 in vitro J Virol 8566696677.[CrossRef] [Google Scholar]
  18. Bertke A.S., Ma A., Margolis M.S., Margolis T.P. (2013). Different mechanisms regulate productive herpes simplex virus 1 (HSV-1) and HSV-2 infections in adult trigeminal neuronsJ Virol 8765126516.[CrossRef] [Google Scholar]
  19. Bibor-Hardy V., Sakr F. (1989). A 165 kd protein of the herpes simplex virion shares a common epitope with the regulatory protein, ICP4Biochem Biophys Res Commun 163124130.[CrossRef] [Google Scholar]
  20. Bigley N.J. (2014). Complexity of interferon-γ interactions with HSV-1Front Immunol 515.[CrossRef] [Google Scholar]
  21. Birlea M., Arendt G., Orhan E., Schmid D.S., Bellini W.J., Schmidt C., Gilden D., Cohrs R.J. (2011). Subclinical reactivation of varicella zoster virus in all stages of HIV infectionJ Neurol Sci 3042224.[CrossRef] [Google Scholar]
  22. Birmanns B., Reibstein I., Steiner I. (1993). Characterization of an in vivo reactivation model of herpes simplex virus from mice trigeminal gangliaJ Gen Virol 7424872491.[CrossRef] [Google Scholar]
  23. Bloom D.C., Giordani N.V., Kwiatkowski D.L. (2010). Epigenetic regulation of latent HSV-1 gene expressionBiochim Biophys Acta 1799246256.[CrossRef] [Google Scholar]
  24. Brazeau E., Mahalingam R., Gilden D., Wellish M., Kaufer B.B., Osterrieder N., Pugazhenthi S. (2010). Varicella-zoster virus-induced apoptosis in MeWo cells is accompanied by down-regulation of Bcl-2 expressionJ Neurovirol 16133140.[CrossRef] [Google Scholar]
  25. Camarena V., Kobayashi M., Kim J.Y., Roehm P., Perez R., Gardner J., Wilson A.C., Mohr I., Chao M.V. (2010). Nature and duration of growth factor signaling through receptor tyrosine kinases regulates HSV-1 latency in neuronsCell Host Microbe 8320330.[CrossRef] [Google Scholar]
  26. Carpenter J.E., Henderson E.P., Grose C. (2009). Enumeration of an extremely high particle-to-PFU ratio for varicella-zoster virusJ Virol 8369176921.[CrossRef] [Google Scholar]
  27. Caudill J.W., Romanowski E., Araullo-Cruz T., Gordon Y.J. (1986). Recovery of a latent HSV-1 thymidine kinase negative strain following iontophoresis and co-cultivation in the ocularly-infected rabbit modelCurr Eye Res 54145.[CrossRef] [Google Scholar]
  28. Caughman G.B., Robertson A.T., Gray W.L., Sullivan D.C., O'Callaghan D.J. (1988). Characterization of equine herpesvirus type 1 immediate early proteinsVirology 163563571.[CrossRef] [Google Scholar]
  29. Chen J.J., Zhu Z., Gershon A.A., Gershon M.D. (2004). Mannose 6-phosphate receptor dependence of varicella zoster virus infection in vitro and in the epidermis during varicella and zosterCell 119915926.[CrossRef] [Google Scholar]
  30. Chen Q., Lin L., Smith S., Huang J., Berger S.L., Zhou J. (2007). CTCF-dependent chromatin boundary element between the latency-associated transcript and ICP0 promoters in the herpes simplex virus type 1 genomeJ Virol 8151925201.[CrossRef] [Google Scholar]
  31. Chen J.J., Gershon A.A., Li Z., Cowles R.A., Gershon M.D. (2011). Varicella zoster virus (VZV) infects and establishes latency in enteric neuronsJ Neurovirol 17578589.[CrossRef] [Google Scholar]
  32. Chen H.S., Wikramasinghe P., Showe L., Lieberman P.M. (2012). Cohesins repress Kaposi's sarcoma-associated herpesvirus immediate early gene transcription during latencyJ Virol 8694549464.[CrossRef] [Google Scholar]
  33. Chernukhin I., Shamsuddin S., Kang S.Y., Bergström R., Kwon Y.W., Yu W., Whitehead J., Mukhopadhyay R., Docquier F., other authors. (2007). CTCF interacts with and recruits the largest subunit of RNA polymerase II to CTCF target sites genome-wideMol Cell Biol 2716311648.[CrossRef] [Google Scholar]
  34. Cheung P., Ellison K.S., Verity R., Smiley J.R. (2000). Herpes simplex virus ICP27 induces cytoplasmic accumulation of unspliced polyadenylated alpha-globin pre-mRNA in infected HeLa cellsJ Virol 7429132919.[CrossRef] [Google Scholar]
  35. Clarke P., Beer T., Cohrs R., Gilden D.H. (1995). Configuration of latent varicella-zoster virus DNAJ Virol 6981518154. [Google Scholar]
  36. Cliffe A.R., Knipe D.M. (2008). Herpes simplex virus ICP0 promotes both histone removal and acetylation on viral DNA during lytic infectionJ Virol 821203012038.[CrossRef] [Google Scholar]
  37. Cliffe A.R., Garber D.A., Knipe D.M. (2009). Transcription of the herpes simplex virus latency-associated transcript promotes the formation of facultative heterochromatin on lytic promotersJ Virol 8381828190.[CrossRef] [Google Scholar]
  38. Cliffe A.R., Coen D.M., Knipe D.M. (2013). Kinetics of facultative heterochromatin and polycomb group protein association with the herpes simplex viral genome during establishment of latent infectionMBio 4e00590-12.[CrossRef] [Google Scholar]
  39. Cohen J.I. (2010). The varicella-zoster virus genome. In Varicella-Zoster Virus, pp. 114. Edited by Abendroth A., Arvin A. M., Moffat J. F. New YorkSpringer.[CrossRef] [Google Scholar]
  40. Cohen J.I., Seidel K. (1994). Varicella-zoster virus (VZV) open reading frame 10 protein, the homolog of the essential herpes simplex virus protein VP16, is dispensable for VZV replication in vitro J Virol 6878507858. [Google Scholar]
  41. Cohrs R., Mahalingam R., Dueland A.N., Wolf W., Wellish M., Gilden D.H. (1992). Restricted transcription of varicella-zoster virus in latently infected human trigeminal and thoracic gangliaJ Infect Dis 166(Suppl. 1), S24S29.[CrossRef] [Google Scholar]
  42. Cohrs R.J., Barbour M., Gilden D.H. (1996). Varicella-zoster virus (VZV) transcription during latency in human ganglia: detection of transcripts mapping to genes 21, 29, 62, and 63 in a cDNA library enriched for VZV RNAJ Virol 7027892796. [Google Scholar]
  43. Cohrs R.J., Randall J., Smith J., Gilden D.H., Dabrowski C., van Der Keyl H., Tal-Singer R. (2000). Analysis of individual human trigeminal ganglia for latent herpes simplex virus type 1 and varicella-zoster virus nucleic acids using real-time PCRJ Virol 741146411471.[CrossRef] [Google Scholar]
  44. Cohrs R.J., Gilden D.H., Kinchington P.R., Grinfeld E., Kennedy P.G. (2003a). Varicella-zoster virus gene 66 transcription and translation in latently infected human gangliaJ Virol 7766606665.[CrossRef] [Google Scholar]
  45. Cohrs R.J., Hurley M.P., Gilden D.H. (2003b). Array analysis of viral gene transcription during lytic infection of cells in tissue culture with varicella-zoster virusJ Virol 771171811732.[CrossRef] [Google Scholar]
  46. Cohrs R.J., Laguardia J.J., Gilden D. (2005). Distribution of latent herpes simplex virus type-1 and varicella zoster virus DNA in human trigeminal gangliaVirus Genes 31223227.[CrossRef] [Google Scholar]
  47. Cohrs R.J., Mehta S.K., Schmid D.S., Gilden D.H., Pierson D.L. (2008). Asymptomatic reactivation and shed of infectious varicella zoster virus in astronautsJ Med Virol 8011161122.[CrossRef] [Google Scholar]
  48. Cuchet-Lourenço D., Vanni E., Glass M., Orr A., Everett R.D. (2012). Herpes simplex virus 1 ubiquitin ligase ICP0 interacts with PML isoform I and induces its SUMO-independent degradationJ Virol 861120911222.[CrossRef] [Google Scholar]
  49. da Silva L.F., Sinani D., Jones C. (2012). ICP27 protein encoded by bovine herpesvirus type 1 (bICP27) interferes with promoter activity of the bovine genes encoding beta interferon 1 (IFN-β1) and IFN-β3Virus Res 169162168.[CrossRef] [Google Scholar]
  50. Danaher R.J., Jacob R.J., Steiner M.R., Allen W.R., Hill J.M., Miller C.S. (2005). Histone deacetylase inhibitors induce reactivation of herpes simplex virus type 1 in a latency-associated transcript-independent manner in neuronal cellsJ Neurovirol 11306317.[CrossRef] [Google Scholar]
  51. Dargan D.J., Patel A.H., Subak-Sharpe J.H. (1995). PREPs: herpes simplex virus type 1-specific particles produced by infected cells when viral DNA replication is blockedJ Virol 6949244932. [Google Scholar]
  52. Davison A.J., Scott J.E. (1986). The complete DNA sequence of varicella-zoster virusJ Gen Virol 6717591816.[CrossRef] [Google Scholar]
  53. Debrus S., Sadzot-Delvaux C., Nikkels A.F., Piette J., Rentier B. (1995). Varicella-zoster virus gene 63 encodes an immediate-early protein that is abundantly expressed during latencyJ Virol 6932403245. [Google Scholar]
  54. Di Valentin E., Bontems S., Habran L., Jolois O., Markine-Goriaynoff N., Vanderplasschen A., Sadzot-Delvaux C., Piette J. (2005). Varicella-zoster virus IE63 protein represses the basal transcription machinery by disorganizing the pre-initiation complexBiol Chem 386255267.[CrossRef] [Google Scholar]
  55. Didych D.A., Kotova E.S., Akopov S.B., Nikolaev L.G., Sverdlov E.D. (2012). DNA fragments binding CTCF in vitro in vivo are capable of blocking enhancer activityBMC Res Notes 5178.[CrossRef] [Google Scholar]
  56. Döhner K., Radtke K., Schmidt S., Sodeik B. (2006). Eclipse phase of herpes simplex virus type 1 infection: efficient dynein-mediated capsid transport without the small capsid protein VP26J Virol 8082118224.[CrossRef] [Google Scholar]
  57. Dressler G.R., Rock D.L., Fraser N.W. (1987). Latent herpes simplex virus type 1 DNA is not extensively methylated in vivo J Gen Virol 6817611765.[CrossRef] [Google Scholar]
  58. Du T., Zhou G., Khan S., Gu H., Roizman B. (2010). Disruption of HDAC/CoREST/REST repressor by dnREST reduces genome silencing and increases virulence of herpes simplex virusProc Natl Acad Sci U S A 1071590415909.[CrossRef] [Google Scholar]
  59. Du T., Zhou G., Roizman B. (2011). HSV-1 gene expression from reactivated ganglia is disordered and concurrent with suppression of latency-associated transcript and miRNAsProc Natl Acad Sci U S A 1081882018824.[CrossRef] [Google Scholar]
  60. Du T., Zhou G., Roizman B. (2012). Induction of apoptosis accelerates reactivation of latent HSV-1 in ganglionic organ cultures and replication in cell culturesProc Natl Acad Sci U S A 1091461614621.[CrossRef] [Google Scholar]
  61. Du T., Zhou G., Roizman B. (2013). Modulation of reactivation of latent herpes simplex virus 1 in ganglionic organ cultures by p300/CBP and STAT3Proc Natl Acad Sci U S A 110E2621E2628.[CrossRef] [Google Scholar]
  62. Dueland A.N., Martin J.R., Devlin M.E., Wellish M., Mahalingam R., Cohrs R., Soike K.F., Gilden D.H. (1992). Acute simian varicella infection. Clinical, laboratory, pathologic, and virologic featuresLab Invest 66762773. [Google Scholar]
  63. Dukhovny A., Sloutskin A., Markus A., Yee M.B., Kinchington P.R., Goldstein R.S. (2012). Varicella-zoster virus infects human embryonic stem cell-derived neurons and neurospheres but not pluripotent embryonic stem cells or early progenitorsJ Virol 8632113218.[CrossRef] [Google Scholar]
  64. Efstathiou S., Minson A.C., Field H.J., Anderson J.R., Wildy P. (1986). Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humansJ Virol 57446455. [Google Scholar]
  65. Eisfeld A.J., Yee M.B., Erazo A., Abendroth A., Kinchington P.R. (2007). Downregulation of class I major histocompatibility complex surface expression by varicella-zoster virus involves open reading frame 66 protein kinase-dependent and -independent mechanismsJ Virol 8190349049.[CrossRef] [Google Scholar]
  66. Elliott G., Mouzakitis G., O'Hare P. (1995). VP16 interacts via its activation domain with VP22, a tegument protein of herpes simplex virus, and is relocated to a novel macromolecular assembly in coexpressing cellsJ Virol 6979327941. [Google Scholar]
  67. Erazo A., Yee M.B., Osterrieder N., Kinchington P.R. (2008). Varicella-zoster virus open reading frame 66 protein kinase is required for efficient viral growth in primary human corneal stromal fibroblast cellsJ Virol 8276537665.[CrossRef] [Google Scholar]
  68. Ertel M.K., Cammarata A.L., Hron R.J., Neumann D.M. (2012). CTCF occupation of the herpes simplex virus 1 genome is disrupted at early times postreactivation in a transcription-dependent mannerJ Virol 861274112759.[CrossRef] [Google Scholar]
  69. Everett R.D., Dunlop M. (1984). Trans activation of plasmid-borne promoters by adenovirus and several herpes group virusesNucleic Acids Res 1259695978.[CrossRef] [Google Scholar]
  70. Everett R.D., Maul G.G. (1994). HSV-1 IE protein Vmw110 causes redistribution of PMLEMBO J 1350625069. [Google Scholar]
  71. Everett R.D., Murray J. (2005). ND10 components relocate to sites associated with herpes simplex virus type 1 nucleoprotein complexes during virus infectionJ Virol 7950785089.[CrossRef] [Google Scholar]
  72. Everett R.D., Rechter S., Papior P., Tavalai N., Stamminger T., Orr A. (2006). PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0J Virol 8079958005.[CrossRef] [Google Scholar]
  73. Everett R.D., Boutell C., McNair C., Grant L., Orr A. (2010). Comparison of the biological and biochemical activities of several members of the alphaherpesvirus ICP0 family of proteinsJ Virol 8434763487.[CrossRef] [Google Scholar]
  74. Farrell M.J., Margolis T.P., Gomes W.A., Feldman L.T. (1994). Effect of the transcription start region of the herpes simplex virus type 1 latency-associated transcript promoter on expression of productively infected neurons in vivo J Virol 6853375343. [Google Scholar]
  75. Flores O., Nakayama S., Whisnant A.W., Javanbakht H., Cullen B.R., Bloom D.C. (2013). Mutational inactivation of herpes simplex virus 1 microRNAs identifies viral mRNA targets and reveals phenotypic effects in cultureJ Virol 8765896603.[CrossRef] [Google Scholar]
  76. Fraefel C., Ackermann M., Schwyzer M. (1994). Identification of the bovine herpesvirus 1 circ protein, a myristylated and virion-associated polypeptide which is not essential for virus replication in cell cultureJ Virol 6880828088. [Google Scholar]
  77. Freiman R.N., Herr W. (1997). Viral mimicry: common mode of association with HCF by VP16 and the cellular protein LZIPGenes Dev 1131223127.[CrossRef] [Google Scholar]
  78. Gan L., Wang M., Chen J.J., Gershon M.D., Gershon A.A. (2014). Infected peripheral blood mononuclear cells transmit latent varicella zoster virus infection to the guinea pig enteric nervous systemJ Neurovirol 20442456.[CrossRef] [Google Scholar]
  79. Garvey C.E., McGowin C.L., Foster T.P. (2014). Development and evaluation of SYBR Green-I based quantitative PCR assays for herpes simplex virus type 1 whole transcriptome analysisJ Virol Methods 201101111.[CrossRef] [Google Scholar]
  80. Gary L., Gilden D.H., Cohrs R.J. (2006). Epigenetic regulation of varicella-zoster virus open reading frames 62 and 63 in latently infected human trigeminal gangliaJ Virol 8049214926.[CrossRef] [Google Scholar]
  81. Gaszner M., Felsenfeld G. (2006). Insulators: exploiting transcriptional and epigenetic mechanismsNat Rev Genet 7703713.[CrossRef] [Google Scholar]
  82. Gebhardt B.M., Halford W.P. (2005). Evidence that spontaneous reactivation of herpes virus does not occur in miceVirol J 267.[CrossRef] [Google Scholar]
  83. Gershon A.A., Chen J., Gershon M.D. (2008). A model of lytic, latent, and reactivating varicella-zoster virus infections in isolated enteric neuronsJ Infect Dis 197 (Suppl 2., S61S65.[CrossRef] [Google Scholar]
  84. Gershon A.A., Chen J., Davis L., Krinsky C., Cowles R., Reichard R., Gershon M. (2012). Latency of varicella zoster virus in dorsal root, cranial, and enteric ganglia in vaccinated childrenTrans Am Clin Climatol Assoc 1231733. [Google Scholar]
  85. Gibbons J.L., Miller H.G., Stanton J.B. (1956). Para-infectious encephalomyelitis and related syndromes; a critical review of the neurological complications of certain specific feversQ J Med 25427505. [Google Scholar]
  86. Gilden D., Nagel M.A., Cohrs R.J., Mahalingam R. (2013). The variegate neurological manifestations of varicella zoster virus infectionCurr Neurol Neurosci Rep 13374.[CrossRef] [Google Scholar]
  87. Gilden D., White T., Khmeleva N., Heintzman A., Choe A., Boyer P.J., Grose C., Carpenter J.E., Rempel A., other authors. (2015). Prevalence and distribution of VZV in temporal arteries of patients with giant cell arteritisNeurology[Epub ahead of print]. [Google Scholar]
  88. Goodwin T.J., McCarthy M., Osterrieder N., Cohrs R.J., Kaufer B.B. (2013). Three-dimensional normal human neural progenitor tissue-like assemblies: a model of persistent varicella-zoster virus infectionPLoS Pathog 9e1003512.[CrossRef] [Google Scholar]
  89. Gray W.L., Baumann R.P., Robertson A.T., O'Callaghan D.J., Staczek J. (1987). Characterization and mapping of equine herpesvirus type 1 immediate early, early, and late transcriptsVirus Res 8233244.[CrossRef] [Google Scholar]
  90. Grigoryan S., Kinchington P.R., Yang I.H., Selariu A., Zhu H., Yee M., Goldstein R.S. (2012). Retrograde axonal transport of VZV: kinetic studies in hESC-derived neuronsJ Neurovirol 18462470.[CrossRef] [Google Scholar]
  91. Grinfeld E., Kennedy P.G. (2004). Translation of varicella-zoster virus genes during human ganglionic latencyVirus Genes 29317319.[CrossRef] [Google Scholar]
  92. Grose C. (1990). Glycoproteins encoded by varicella-zoster virus: biosynthesis, phosphorylation, and intracellular traffickingAnnu Rev Microbiol 445980.[CrossRef] [Google Scholar]
  93. Grose C., Brunel P.A. (1978). Varicella-zoster virus: isolation and propagation in human melanoma cells at 36 and 32 degrees CInfect Immun 19199203. [Google Scholar]
  94. Grose C., Perrotta D.M., Brunell P.A., Smith G.C. (1979). Cell-free varicella-zoster virus in cultured human melanoma cellsJ Gen Virol 431527.[CrossRef] [Google Scholar]
  95. Grose C., Yu X., Cohrs R.J., Carpenter J.E., Bowlin J.L., Gilden D. (2013). Aberrant virion assembly and limited glycoprotein C production in varicella-zoster virus-infected neuronsJ Virol 8796439648.[CrossRef] [Google Scholar]
  96. Gu H., Roizman B. (2003). The degradation of promyelocytic leukemia and Sp100 proteins by herpes simplex virus 1 is mediated by the ubiquitin-conjugating enzyme UbcH5aProc Natl Acad Sci U S A 10089638968.[CrossRef] [Google Scholar]
  97. Gu H., Liang Y., Mandel G., Roizman B. (2005). Components of the REST/CoREST/histone deacetylase repressor complex are disrupted, modified, and translocated in HSV-1-infected cellsProc Natl Acad Sci U S A 10275717576.[CrossRef] [Google Scholar]
  98. Hafezi W., Lorentzen E.U., Eing B.R., Müller M., King N.J., Klupp B., Mettenleiter T.C., Kühn J.E. (2012). Entry of herpes simplex virus type 1 (HSV-1) into the distal axons of trigeminal neurons favors the onset of nonproductive, silent infectionPLoS Pathog 8e1002679.[CrossRef] [Google Scholar]
  99. Halling G., Giannini C., Britton J.W., Lee R.W., Watson R.E. Jr, Terrell C.L., Parney I.F., Buckingham E.M., Carpenter J.E., Grose C. (2014). Focal encephalitis following varicella-zoster virus reactivation without rash in a healthy immunized young adultJ Infect Dis 210713716.[CrossRef] [Google Scholar]
  100. Harkness J.M., Kader M., DeLuca N.A. (2014). Transcription of the herpes simplex virus 1 genome during productive and quiescent infection of neuronal and nonneuronal cellsJ Virol 8868476861.[CrossRef] [Google Scholar]
  101. Held K., Junker A., Dornmair K., Meinl E., Sinicina I., Brandt T., Theil D., Derfuss T. (2011). Expression of herpes simplex virus 1-encoded microRNAs in human trigeminal ganglia and their relation to local T-cell infiltratesJ Virol 8596809685.[CrossRef] [Google Scholar]
  102. Held K., Eiglmeier I., Himmelein S., Sinicina I., Brandt T., Theil D., Dornmair K., Derfuss T. (2012). Clonal expansions of CD8? T cells in latently HSV-1-infected human trigeminal gangliaJ Neurovirol 186268.[CrossRef] [Google Scholar]
  103. Hill A., Jugovic P., York I., Russ G., Bennink J., Yewdell J., Ploegh H., Johnson D. (1995). Herpes simplex virus turns off the TAP to evade host immunityNature 375411415.[CrossRef] [Google Scholar]
  104. Hood C., Cunningham A.L., Slobedman B., Arvin A.M., Sommer M.H., Kinchington P.R., Abendroth A. (2006). Varicella-zoster virus ORF63 inhibits apoptosis of primary human neuronsJ Virol 8010251031.[CrossRef] [Google Scholar]
  105. Hou C., Zhao H., Tanimoto K., Dean A. (2008). CTCF-dependent enhancer-blocking by alternative chromatin loop formationProc Natl Acad Sci U S A 1052039820403.[CrossRef] [Google Scholar]
  106. Imai Y., Apakupakul K., Krause P.R., Halford W.P., Margolis T.P. (2009). Investigation of the mechanism by which herpes simplex virus type 1 LAT sequences modulate preferential establishment of latent infection in mouse trigeminal gangliaJ Virol 8378737882.[CrossRef] [Google Scholar]
  107. Inman M., Perng G.C., Henderson G., Ghiasi H., Nesburn A.B., Wechsler S.L., Jones C. (2001). Region of herpes simplex virus type 1 latency-associated transcript sufficient for wild-type spontaneous reactivation promotes cell survival in tissue cultureJ Virol 7536363646.[CrossRef] [Google Scholar]
  108. Isaac A., Wilcox K.W., Taylor J.L. (2006). SP100B, a repressor of gene expression preferentially binds to DNA with unmethylated CpGsJ Cell Biochem 9811061122.[CrossRef] [Google Scholar]
  109. Javier R.T., Stevens J.G., Dissette V.B., Wagner E.K. (1988). A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent stateVirology 166254257.[CrossRef] [Google Scholar]
  110. Jiang X., Chentoufi A.A., Hsiang C., Carpenter D., Osorio N., BenMohamed L., Fraser N.W., Jones C., Wechsler S.L. (2011). The herpes simplex virus type 1 latency-associated transcript can protect neuron-derived C1300 and Neuro2A cells from granzyme B-induced apoptosis and CD8 T-cell killingJ Virol 8523252332.[CrossRef] [Google Scholar]
  111. Jones M., Dry I.R., Frampton D., Singh M., Kanda R.K., Yee M.B., Kellam P., Hollinshead M., Kinchington P.R., other authors. (2014). RNA-seq analysis of host and viral gene expression highlights interaction between varicella zoster virus and keratinocyte differentiationPLoS Pathog 10e1003896.[CrossRef] [Google Scholar]
  112. Jugovic P., Hill A.M., Tomazin R., Ploegh H., Johnson D.C. (1998). Inhibition of major histocompatibility complex class I antigen presentation in pig and primate cells by herpes simplex virus type 1 and 2 ICP47J Virol 7250765084. [Google Scholar]
  113. Jurak I., Kramer M.F., Mellor J.C., van Lint A.L., Roth F.P., Knipe D.M., Coen D.M. (2010). Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2J Virol 8446594672.[CrossRef] [Google Scholar]
  114. Jurak I., Silverstein L.B., Sharma M., Coen D.M. (2012). Herpes simplex virus is equipped with RNA- and protein-based mechanisms to repress expression of ATRX, an effector of intrinsic immunityJ Virol 861009310102.[CrossRef] [Google Scholar]
  115. Kagey M.H., Newman J.J., Bilodeau S., Zhan Y., Orlando D.A., van Berkum N.L., Ebmeier C.C., Goossens J., Rahl P.B., other authors. (2010). Mediator and cohesin connect gene expression and chromatin architectureNature 467430435.[CrossRef] [Google Scholar]
  116. Kang H., Lieberman P.M. (2011). Mechanism of glycyrrhizic acid inhibition of Kaposi's sarcoma-associated herpesvirus: disruption of CTCF-cohesin-mediated RNA polymerase II pausing and sister chromatid cohesionJ Virol 851115911169.[CrossRef] [Google Scholar]
  117. Kang S., Seo S., Hill J., Kwon B., Lee H., Cho H., Vinay D., Kwon B. (2003). Changes in gene expression in latent HSV-1-infected rabbit trigeminal ganglia following epinephrine iontophoresisCurr Eye Res 26225229.[CrossRef] [Google Scholar]
  118. Kaufer B.B., Smejkal B., Osterrieder N. (2010). The varicella-zoster virus ORFS/L (ORF0) gene is required for efficient viral replication and contains an element involved in DNA cleavageJ Virol 841166111669.[CrossRef] [Google Scholar]
  119. Kaufman H.E., Azcuy A.M., Varnell E.D., Sloop G.D., Thompson H.W., Hill J.M. (2005). HSV-1 DNA in tears and saliva of normal adultsInvest Ophthalmol Vis Sci 46241247.[CrossRef] [Google Scholar]
  120. Kemble G.W., Annunziato P., Lungu O., Winter R.E., Cha T.A., Silverstein S.J., Spaete R.R. (2000). Open reading frame S/L of varicella-zoster virus encodes a cytoplasmic protein expressed in infected cellsJ Virol 741131111321.[CrossRef] [Google Scholar]
  121. Kennedy P.G., Cohrs R.J. (2010). Varicella-zoster virus human ganglionic latency: a current summaryJ Neurovirol 16411418.[CrossRef] [Google Scholar]
  122. Kennedy P.G., Steiner I. (1994). A molecular and cellular model to explain the differences in reactivation from latency by herpes simplex and varicella-zoster virusesNeuropathol Appl Neurobiol 20368374.[CrossRef] [Google Scholar]
  123. Kennedy P.G., Grinfeld E., Gow J.W. (1998). Latent varicella-zoster virus is located predominantly in neurons in human trigeminal gangliaProc Natl Acad Sci U S A 9546584662.[CrossRef] [Google Scholar]
  124. Kennedy P.G., Grinfeld E., Bell J.E. (2000). Varicella-zoster virus gene expression in latently infected and explanted human gangliaJ Virol 741189311898.[CrossRef] [Google Scholar]
  125. Kennedy P.G., Grinfeld E., Bontems S., Sadzot-Delvaux C. (2001). Varicella-zoster virus gene expression in latently infected rat dorsal root gangliaVirology 289218223.[CrossRef] [Google Scholar]
  126. Kennedy P.G., Grinfeld E., Craigon M., Vierlinger K., Roy D., Forster T., Ghazal P. (2005). Transcriptomal analysis of varicella-zoster virus infection using long oligonucleotide-based microarraysJ Gen Virol 8626732684.[CrossRef] [Google Scholar]
  127. Kim J.Y., Mandarino A., Chao M.V., Mohr I., Wilson A.C. (2012). Transient reversal of episome silencing precedes VP16-dependent transcription during reactivation of latent HSV-1 in neuronsPLoS Pathog 8e1002540.[CrossRef] [Google Scholar]
  128. Kinchington P.R., Reinhold W.C., Casey T.A., Straus S.E., Hay J., Ruyechan W.T. (1985). Inversion and circularization of the varicella-zoster virus genomeJ Virol 56194200. [Google Scholar]
  129. Kinchington P.R., Hougland J.K., Arvin A.M., Ruyechan W.T., Hay J. (1992). The varicella-zoster virus immediate-early protein IE62 is a major component of virus particlesJ Virol 66359366. [Google Scholar]
  130. Kinchington P.R., Bookey D., Turse S.E. (1995). The transcriptional regulatory proteins encoded by varicella-zoster virus open reading frames (ORFs) 4 and 63, but not ORF 61, are associated with purified virus particlesJ Virol 6942744282. [Google Scholar]
  131. Knickelbein J.E., Khanna K.M., Yee M.B., Baty C.J., Kinchington P.R., Hendricks R.L. (2008). Noncytotoxic lytic granule-mediated CD8+T cell inhibition of HSV-1 reactivation from neuronal latencyScience 322268271.[CrossRef] [Google Scholar]
  132. Kobayashi M., Kim J.Y., Camarena V., Roehm P.C., Chao M.V., Wilson A.C., Mohr I. (2012a). A primary neuron culture system for the study of herpes simplex virus latency and reactivationJ Vis Exp 623823. [Google Scholar]
  133. Kobayashi M., Wilson A.C., Chao M.V., Mohr I. (2012b). Control of viral latency in neurons by axonal mTOR signaling and the 4E-BP translation repressorGenes Dev 2615271532.[CrossRef] [Google Scholar]
  134. Kramer M.F., Jurak I., Pesola J.M., Boissel S., Knipe D.M., Coen D.M. (2011). Herpes simplex virus 1 microRNAs expressed abundantly during latent infection are not essential for latency in mouse trigeminal gangliaVirology 417239247.[CrossRef] [Google Scholar]
  135. Kristie T.M., Roizman B. (1986). Alpha 4, the major regulatory protein of herpes simplex virus type 1, is stably and specifically associated with promoter-regulatory domains of alpha genes and of selected other viral genesProc Natl Acad Sci U S A 8332183222.[CrossRef] [Google Scholar]
  136. Kristie T.M., Vogel J.L., Sears A.E. (1999). Nuclear localization of the C1 factor (host cell factor) in sensory neurons correlates with reactivation of herpes simplex virus from latencyProc Natl Acad Sci U S A 9612291233.[CrossRef] [Google Scholar]
  137. Ku C.C., Zerboni L., Ito H., Graham B.S., Wallace M., Arvin A.M. (2004). Varicella-zoster virus transfer to skin by T cells and modulation of viral replication by epidermal cell interferon-alphaJ Exp Med 200917925.[CrossRef] [Google Scholar]
  138. Kubat N.J., Tran R.K., McAnany P., Bloom D.C. (2004a). Specific histone tail modification and not DNA methylation is a determinant of herpes simplex virus type 1 latent gene expressionJ Virol 7811391149.[CrossRef] [Google Scholar]
  139. Kubat N.J., Amelio A.L., Giordani N.V., Bloom D.C. (2004b). The herpes simplex virus type 1 latency-associated transcript (LAT) enhancer/rcr is hyperacetylated during latency independently of LAT transcriptionJ Virol 781250812518.[CrossRef] [Google Scholar]
  140. Kuddus R., Gu B., DeLuca N.A. (1995). Relationship between TATA-binding protein and herpes simplex virus type 1 ICP4 DNA-binding sites in complex formation and repression of transcriptionJ Virol 6955685575. [Google Scholar]
  141. Kwiatkowski D.L., Thompson H.W., Bloom D.C. (2009). The polycomb group protein Bmi1 binds to the herpes simplex virus 1 latent genome and maintains repressive histone marks during latencyJ Virol 8381738181.[CrossRef] [Google Scholar]
  142. Kyratsous C.A., Silverstein S.J. (2009). Components of nuclear domain 10 bodies regulate varicella-zoster virus replicationJ Virol 8342624274.[CrossRef] [Google Scholar]
  143. Lacasse J.J., Schang L.M. (2010). During lytic infections, herpes simplex virus type 1 DNA is in complexes with the properties of unstable nucleosomesJ Virol 8419201933.[CrossRef] [Google Scholar]
  144. Laibson P.R., Kibrick S. (1966). Reactivation of herpetic keratitis by epinephrine in rabbitArch Ophthalmol 75254260.[CrossRef] [Google Scholar]
  145. Lanfranca M.P., Mostafa H.H., Davido D.J. (2014). HSV-1 ICP0: an E3 ubiquitin ligase that counteracts host intrinsic and innate immunityCells 3438454.[CrossRef] [Google Scholar]
  146. Leib D.A., Bogard C.L., Kosz-Vnenchak M., Hicks K.A., Coen D.M., Knipe D.M., Schaffer P.A. (1989). A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequencyJ Virol 6328932900. [Google Scholar]
  147. Leigh J.F., Acharya N., Cevallos V., Margolis T.P. (2008). Does asymptomatic shedding of herpes simplex virus on the ocular surface lead to false-positive diagnostic PCR results?Br J Ophthalmol 92435436.[CrossRef] [Google Scholar]
  148. Lester J.T., DeLuca N.A. (2011). Herpes simplex virus 1 ICP4 forms complexes with TFIID and mediator in virus-infected cellsJ Virol 8557335744.[CrossRef] [Google Scholar]
  149. Lewis M.E., Warren K.G., Jeffrey V.M., Shnitka T.K. (1982). Factors affecting recovery of latent herpes simplex virus from human trigeminal gangliaCan J Microbiol 28123129.[CrossRef] [Google Scholar]
  150. Liang S., Lu Y., Jelinek J., Estecio M., Li H., Issa J.P. (2009). Analysis of epigenetic modifications by next generation sequencingConf Proc IEEE Eng Med Biol Soc 20096730. [Google Scholar]
  151. Liesegang T.J., Melton L.J. III, Daly P.J., Ilstrup D.M. (1989). Epidemiology of ocular herpes simplex. Incidence in Rochester, Minn, 1950 through 1982Arch Ophthalmol 10711551159.[CrossRef] [Google Scholar]
  152. Liljeqvist J.A., Tunbäck P., Norberg P. (2009). Asymptomatically shed recombinant herpes simplex virus type 1 strains detected in salivaJ Gen Virol 90559566.[CrossRef] [Google Scholar]
  153. Lin F.S., Ding Q., Guo H., Zheng A.C. (2010). The herpes simplex virus type 1 infected cell protein 22Virol Sin 2517.[CrossRef] [Google Scholar]
  154. Liu Y., Gong W., Huang C.C., Herr W., Cheng X. (1999). Crystal structure of the conserved core of the herpes simplex virus transcriptional regulatory protein VP16Genes Dev 1316921703.[CrossRef] [Google Scholar]
  155. Lium E.K., Panagiotidis C.A., Wen X., Silverstein S. (1996). Repression of the alpha0 gene by ICP4 during a productive herpes simplex virus infectionJ Virol 7034883496. [Google Scholar]
  156. Low M., Hay J., Keir H.M. (1969). DNA of herpes simplex virus is not a substrate for methylation in vivo J Mol Biol 46205207.[CrossRef] [Google Scholar]
  157. Luciano R.L., Wilson A.C. (2002). An activation domain in the C-terminal subunit of HCF-1 is important for transactivation by VP16 and LZIPProc Natl Acad Sci U S A 991340313408.[CrossRef] [Google Scholar]
  158. Lukashchuk V., Everett R.D. (2010). Regulation of ICP0-null mutant herpes simplex virus type 1 infection by ND10 components ATRX and hDaxxJ Virol 8440264040.[CrossRef] [Google Scholar]
  159. Lungu O., Panagiotidis C.A., Annunziato P.W., Gershon A.A., Silverstein S.J. (1998). Aberrant intracellular localization of varicella-zoster virus regulatory proteins during latencyProc Natl Acad Sci U S A 9570807085.[CrossRef] [Google Scholar]
  160. Mahalingam R., Wellish M.C., Dueland A.N., Cohrs R.J., Gilden D.H. (1992). Localization of herpes simplex virus and varicella zoster virus DNA in human gangliaAnn Neurol 31444448.[CrossRef] [Google Scholar]
  161. Mahalingam R., Wellish M., Cohrs R., Debrus S., Piette J., Rentier B., Gilden D.H. (1996). Expression of protein encoded by varicella-zoster virus open reading frame 63 in latently infected human ganglionic neuronsProc Natl Acad Sci U S A 9321222124.[CrossRef] [Google Scholar]
  162. Mahalingam R., Wellish M., Soike K., White T., Kleinschmidt-DeMasters B.K., Gilden D.H. (2001). Simian varicella virus infects ganglia before rash in experimentally infected monkeysVirology 279339342.[CrossRef] [Google Scholar]
  163. Margolis T.P., Elfman F.L., Leib D., Pakpour N., Apakupakul K., Imai Y., Voytek C. (2007). Spontaneous reactivation of herpes simplex virus type 1 in latently infected murine sensory gangliaJ Virol 811106911074.[CrossRef] [Google Scholar]
  164. Markus A., Grigoryan S., Sloutskin A., Yee M.B., Zhu H., Yang I.H., Thakor N.V., Sarid R., Kinchington P.R., Goldstein R.S. (2011). Varicella-zoster virus (VZV) infection of neurons derived from human embryonic stem cells: direct demonstration of axonal infection, transport of VZV, and productive neuronal infectionJ Virol 8562206233.[CrossRef] [Google Scholar]
  165. Markus A., Waldman Ben-Asher H., Kinchington P.R., Goldstein R.S. (2014). Cellular transcriptome analysis reveals differential expression of pro- and antiapoptosis genes by varicella-zoster virus-infected neurons and fibroblastsJ Virol 8876747677.[CrossRef] [Google Scholar]
  166. Martin R.G., Dawson C.R., Jones P., Togni B., Lyons C., Oh J.O. (1977). Herpesvirus in sensory and autonomic ganglia after eye infectionArch Ophthalmol 9520532056.[CrossRef] [Google Scholar]
  167. Maul G.G., Guldner H.H., Spivack J.G. (1993). Modification of discrete nuclear domains induced by herpes simplex virus type 1 immediate early gene 1 product (ICP0)J Gen Virol 7426792690.[CrossRef] [Google Scholar]
  168. Maul G.G., Ishov A.M., Everett R.D. (1996). Nuclear domain 10 as preexisting potential replication start sites of herpes simplex virus type-1Virology 2176775.[CrossRef] [Google Scholar]
  169. McFarlane M., Daksis J.I., Preston C.M. (1992). Hexamethylene bisacetamide stimulates herpes simplex virus immediate early gene expression in the absence of trans-induction by Vmw65J Gen Virol 73285292.[CrossRef] [Google Scholar]
  170. McGeoch D.J., Dolan A., Donald S., Brauer D.H. (1986). Complete DNA sequence of the short repeat region in the genome of herpes simplex virus type 1Nucleic Acids Res 1417271745.[CrossRef] [Google Scholar]
  171. McGeoch D.J., Dalrymple M.A., Davison A.J., Dolan A., Frame M.C., McNab D., Perry L.J., Scott J.E., Taylor P. (1988). The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1J Gen Virol 6915311574.[CrossRef] [Google Scholar]
  172. McKnight J.L., Pellett P.E., Jenkins F.J., Roizman B. (1987). Characterization and nucleotide sequence of two herpes simplex virus 1 genes whose products modulate alpha-trans-inducing factor-dependent activation of alpha genesJ Virol 619921001. [Google Scholar]
  173. Mehta S.K., Cohrs R.J., Forghani B., Zerbe G., Gilden D.H., Pierson D.L. (2004). Stress-induced subclinical reactivation of varicella zoster virus in astronautsJ Med Virol 72174179.[CrossRef] [Google Scholar]
  174. Miller C.S., Danaher R.J. (2008). Asymptomatic shedding of herpes simplex virus (HSV) in the oral cavityOral Surg Oral Med Oral Pathol Oral Radiol Endod 1054350.[CrossRef] [Google Scholar]
  175. Mitchell B.M., Bloom D.C., Cohrs R.J., Gilden D.H., Kennedy P.G. (2003). Herpes simplex virus-1 and varicella-zoster virus latency in gangliaJ Neurovirol 9194204.[CrossRef] [Google Scholar]
  176. Montalvo E.A., Parmley R.T., Grose C. (1985). Structural analysis of the varicella-zoster virus gp98–gp62 complex: posttranslational addition of N-linked and O-linked oligosaccharide moietiesJ Virol 53761770. [Google Scholar]
  177. Morita Y., Osaki Y., Doi Y., Forghani B., Gilden D.H. (2003). Chronic active VZV infection manifesting as zoster sine herpete, zoster paresis and myelopathyJ Neurol Sci 21279.[CrossRef] [Google Scholar]
  178. Mueller N.H., Graf L.L., Orlicky D., Gilden D., Cohrs R.J. (2009). Phosphorylation of the nuclear form of varicella-zoster virus immediate-early protein 63 by casein kinase II at serine 186J Virol 831209412100.[CrossRef] [Google Scholar]
  179. Mueller N.H., Walters M.S., Marcus R.A., Graf L.L., Prenni J., Gilden D., Silverstein S.J., Cohrs R.J. (2010). Identification of phosphorylated residues on varicella-zoster virus immediate-early protein ORF63J Gen Virol 9111331137.[CrossRef] [Google Scholar]
  180. Myers M.G., Connelly B.L. (1992). Animal models of varicellaJ Infect Dis 166(Suppl. 1), S48S50.[CrossRef] [Google Scholar]
  181. Nagel M.A., Gilden D., Shade T., Gao B., Cohrs R.J. (2009). Rapid and sensitive detection of 68 unique varicella zoster virus gene transcripts in five multiplex reverse transcription-polymerase chain reactionsJ Virol Methods 1576268.[CrossRef] [Google Scholar]
  182. Nagel M.A., Choe A., Traktinskiy I., Cordery-Cotter R., Gilden D., Cohrs R.J. (2011). Varicella-zoster virus transcriptome in latently infected human gangliaJ Virol 8522762287.[CrossRef] [Google Scholar]
  183. Nesburn A.B., Green M.T., Radnoti M., Walker B. (1977). Reliable in vivo model for latent herpes simplex virus reactivation with peripheral virus sheddingInfect Immun 15772775. [Google Scholar]
  184. Neumann D.M., Bhattacharjee P.S., Giordani N.V., Bloom D.C., Hill J.M. (2007). In vivo changes in the patterns of chromatin structure associated with the latent herpes simplex virus type 1 genome in mouse trigeminal ganglia can be detected at early times after butyrate treatmentJ Virol 811324813253.[CrossRef] [Google Scholar]
  185. Newhart A., Rafalska-Metcalf I.U., Yang T., Negorev D.G., Janicki S.M. (2012). Single-cell analysis of Daxx and ATRX-dependent transcriptional repressionJ Cell Sci 12554895501.[CrossRef] [Google Scholar]
  186. Ng A.K., Block T.M., Aiamkitsumrit B., Wang M., Clementi E., Wu T.T., Taylor J.M., Su Y.H. (2004). Construction of a herpes simplex virus type 1 mutant with only a three-nucleotide change in the branchpoint region of the latency-associated transcript (LAT) and the stability of its two-kilobase LAT intronJ Virol 781209712106.[CrossRef] [Google Scholar]
  187. Nicoll M.P., Efstathiou S. (2013). Expression of the herpes simplex virus type 1 latency-associated transcripts does not influence latency establishment of virus mutants deficient for neuronal replicationJ Gen Virol 9424892494.[CrossRef] [Google Scholar]
  188. Nogueira M.L., Wang V.E., Tantin D., Sharp P.A., Kristie T.M. (2004). Herpes simplex virus infections are arrested in Oct-1-deficient cellsProc Natl Acad Sci U S A 10114731478.[CrossRef] [Google Scholar]
  189. Orzalli M.H., DeLuca N.A., Knipe D.M. (2012). Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 proteinProc Natl Acad Sci U S A 109E3008E3017.[CrossRef] [Google Scholar]
  190. Ottosen S., Herrera F.J., Doroghazi J.R., Hull A., Mittal S., Lane W.S., Triezenberg S.J. (2006). Phosphorylation of the VP16 transcriptional activator protein during herpes simplex virus infection and mutational analysis of putative phosphorylation sitesVirology 345468481.[CrossRef] [Google Scholar]
  191. Ouwendijk W.J., Flowerdew S.E., Wick D., Horn A.K., Sinicina I., Strupp M., Osterhaus A.D., Verjans G.M., Hüfner K. (2012a). Immunohistochemical detection of intra-neuronal VZV proteins in snap-frozen human ganglia is confounded by antibodies directed against blood group A1-associated antigensJ Neurovirol 18172180.[CrossRef] [Google Scholar]
  192. Ouwendijk W.J., Choe A., Nagel M.A., Gilden D., Osterhaus A.D., Cohrs R.J., Verjans G.M. (2012b). Restricted varicella-zoster virus transcription in human trigeminal ganglia obtained soon after deathJ Virol 861020310206.[CrossRef] [Google Scholar]
  193. Ouwendijk W.J., Mahalingam R., Traina-Dorge V., van Amerongen G., Wellish M., Osterhaus A.D., Gilden D., Verjans G.M. (2012c). Simian varicella virus infection of Chinese rhesus macaques produces ganglionic infection in the absence of rashJ Neurovirol 189199.[CrossRef] [Google Scholar]
  194. Ouwendijk W.J., Mahalingam R., de Swart R.L., Haagmans B.L., van Amerongen G., Getu S., Gilden D., Osterhaus A.D., Verjans G.M. (2013). T-cell tropism of simian varicella virus during primary infectionPLoS Pathog 9e1003368.[CrossRef] [Google Scholar]
  195. Pan D., Flores O., Umbach J.L., Pesola J.M., Bentley P., Rosato P.C., Leib D.A., Cullen B.R., Coen D.M. (2014). A neuron-specific host microRNA targets herpes simplex virus-1 ICP0 expression and promotes latencyCell Host Microbe 15446456.[CrossRef] [Google Scholar]
  196. Penkert R.R., Kalejta R.F. (2011). Tegument protein control of latent herpesvirus establishment and animationHerpesviridae 23.[CrossRef] [Google Scholar]
  197. Perng G.C., Slanina S.M., Yukht A., Ghiasi H., Nesburn A.B., Wechsler S.L. (2000). The latency-associated transcript gene enhances establishment of herpes simplex virus type 1 latency in rabbitsJ Virol 7418851891.[CrossRef] [Google Scholar]
  198. Perng G.C., Esmaili D., Slanina S.M., Yukht A., Ghiasi H., Osorio N., Mott K.R., Maguen B., Jin L., other authors. (2001). Three herpes simplex virus type 1 latency-associated transcript mutants with distinct and asymmetric effects on virulence in mice compared with rabbitsJ Virol 7590189028.[CrossRef] [Google Scholar]
  199. Perry L.J., McGeoch D.J. (1988). The DNA sequences of the long repeat region and adjoining parts of the long unique region in the genome of herpes simplex virus type 1J Gen Virol 6928312846.[CrossRef] [Google Scholar]
  200. Pesola J.M., Zhu J., Knipe D.M., Coen D.M. (2005). Herpes simplex virus 1 immediate-early and early gene expression during reactivation from latency under conditions that prevent infectious virus productionJ Virol 791451614525.[CrossRef] [Google Scholar]
  201. Pevenstein S.R., Williams R.K., McChesney D., Mont E.K., Smialek J.E., Straus S.E. (1999). Quantitation of latent varicella-zoster virus and herpes simplex virus genomes in human trigeminal gangliaJ Virol 731051410518. [Google Scholar]
  202. Plotkin S.A., Stein S., Snyder M., Immesoete P. (1977). Attempts to recover varicella virus from gangliaAnn Neurol 2249.[CrossRef] [Google Scholar]
  203. Poffenberger K.L., Raichlen P.E., Herman R.C. (1993). In vitro characterization of a herpes simplex virus type 1 ICP22 deletion mutantVirus Genes 7171186.[CrossRef] [Google Scholar]
  204. Preston V.G., Kennard J., Rixon F.J., Logan A.J., Mansfield R.W., McDougall I.M. (1997). Efficient herpes simplex virus type 1 (HSV-1) capsid formation directed by the varicella-zoster virus scaffolding protein requires the carboxy-terminal sequences from the HSV-1 homologueJ Gen Virol 7816331646. [Google Scholar]
  205. Pugazhenthi S., Nair S., Velmurugan K., Liang Q., Mahalingam R., Cohrs R.J., Nagel M.A., Gilden D. (2011). Varicella-zoster virus infection of differentiated human neural stem cellsJ Virol 8566786686.[CrossRef] [Google Scholar]
  206. Reichelt M., Brady J., Arvin A.M. (2009). The replication cycle of varicella-zoster virus: analysis of the kinetics of viral protein expression, genome synthesis, and virion assembly at the single-cell levelJ Virol 8339043918.[CrossRef] [Google Scholar]
  207. Reichelt M., Wang L., Sommer M., Perrino J., Nour A.M., Sen N., Baiker A., Zerboni L., Arvin A.M. (2011). Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against varicella-zoster virusPLoS Pathog 7e1001266.[CrossRef] [Google Scholar]
  208. Rice S.A., Long M.C., Lam V., Schaffer P.A., Spencer C.A. (1995). Herpes simplex virus immediate-early protein ICP22 is required for viral modification of host RNA polymerase II and establishment of the normal viral transcription programJ Virol 6955505559. [Google Scholar]
  209. Roizman B. (1979). The structure and isomerization of herpes simplex virus genomesCell 16481494.[CrossRef] [Google Scholar]
  210. Roizman B., Knipe D.M., Whitley R.J. (2013). Herpes simplex viruses. In Fields Virology, 6th edn, pp. 18231897. Edited by Knipe D. M., Howley P. M. Philadelphia, PALippincott Williams & Wilkins. [Google Scholar]
  211. Ross J., Williams M., Cohen J.I. (1997). Disruption of the varicella-zoster virus dUTPase and the adjacent ORF9A gene results in impaired growth and reduced syncytia formation in vitro Virology 234186195.[CrossRef] [Google Scholar]
  212. Rubio E.D., Reiss D.J., Welcsh P.L., Disteche C.M., Filippova G.N., Baliga N.S., Aebersold R., Ranish J.A., Krumm A. (2008). CTCF physically links cohesin to chromatinProc Natl Acad Sci U S A 10583098314.[CrossRef] [Google Scholar]
  213. Sadzot-Delvaux C., Arvin A.M., Rentier B. (1998). Varicella-zoster virus IE63, a virion component expressed during latency and acute infection, elicits humoral and cellular immunityJ Infect Dis 178(Suppl. 1), S43S47.[CrossRef] [Google Scholar]
  214. Saitoh H., Momma Y., Inoue H., Yajima D., Iwase H. (2013). Viable herpes simplex virus type 1 and varicella-zoster virus in the trigeminal ganglia of human cadaversJ Med Virol 85833838.[CrossRef] [Google Scholar]
  215. Sandri-Goldin R.M. (1998). ICP27 mediates HSV RNA export by shuttling through a leucine-rich nuclear export signal and binding viral intronless RNAs through an RGG motifGenes Dev 12868879.[CrossRef] [Google Scholar]
  216. Sawtell N.M. (1997). Comprehensive quantification of herpes simplex virus latency at the single-cell levelJ Virol 7154235431. [Google Scholar]
  217. Sawtell N.M. (1998). The probability of in vivo reactivation of herpes simplex virus type 1 increases with the number of latently infected neurons in the gangliaJ Virol 7268886892. [Google Scholar]
  218. Sawtell N.M., Thompson R.L. (1992). Rapid in vivo reactivation of herpes simplex virus in latently infected murine ganglionic neurons after transient hyperthermiaJ Virol 6621502156. [Google Scholar]
  219. Sawtell N.M., Thompson R.L. (2004). Comparison of herpes simplex virus reactivation in ganglia in vivo and in explants demonstrates quantitative and qualitative differencesJ Virol 7877847794.[CrossRef] [Google Scholar]
  220. Sawtell N.M., Poon D.K., Tansky C.S., Thompson R.L. (1998). The latent herpes simplex virus type 1 genome copy number in individual neurons is virus strain specific and correlates with reactivationJ Virol 7253435350. [Google Scholar]
  221. Sawtell N.M., Triezenberg S.J., Thompson R.L. (2011). VP16 serine 375 is a critical determinant of herpes simplex virus exit from latency in vivo J Neurovirol 17546551.[CrossRef] [Google Scholar]
  222. Schiffer J.T., bu-Raddad L., Mark K.E., Zhu J., Selke S., Magaret A., Wald A., Corey L. (2009). Frequent release of low amounts of herpes simplex virus from neurons: results of a mathematical modelSci Transl Med 17ra16.[CrossRef] [Google Scholar]
  223. Schiffer J.T., Mayer B.T., Fong Y., Swan D.A., Wald A. (2014). Herpes simplex virus-2 transmission probability estimates based on quantity of viral sheddingJ R Soc Interface 1120140160.[CrossRef] [Google Scholar]
  224. Schmidt-Chanasit J., Bleymehl K., Rabenau H.F., Ulrich R.G., Cinatl J. Jr, Doerr H.W. (2008). In vitro replication of varicella-zoster virus in human retinal pigment epithelial cellsJ Clin Microbiol 4621222124.[CrossRef] [Google Scholar]
  225. Scriba M. (1975). Herpes simplex virus infection in guinea pigs: an animal model for studying latent and recurrent herpes simplex virus infectionInfect Immun 12162165. [Google Scholar]
  226. Severini A., Morgan A.R., Tovell D.R., Tyrrell D.L. (1994). Study of the structure of replicative intermediates of HSV-1 DNA by pulsed-field gel electrophoresisVirology 200428435.[CrossRef] [Google Scholar]
  227. Sharma S., Biswal N. (1977). Studies on the in vivo methylation of replicating herpes simplex virus type 1 DNAVirology 82265274.[CrossRef] [Google Scholar]
  228. Shen W., Sa e Silva M., Jaber T., Vitvitskaia O., Li S., Henderson G., Jones C. (2009). Two small RNAs encoded within the first 1.5 kilobases of the herpes simplex virus type 1 latency-associated transcript can inhibit productive infection and cooperate to inhibit apoptosisJ Virol 8391319139.[CrossRef] [Google Scholar]
  229. Shimomura Y., Gangarosa L.P. Sr, Kataoka M., Hill J.M. (1983). HSV-1 shedding by lontophoresis of 6-hydroxydopamine followed by topical epinephrineInvest Ophthalmol Vis Sci 2415881594. [Google Scholar]
  230. Simmons A., Nash A.A. (1985). Role of antibody in primary and recurrent herpes simplex virus infectionJ Virol 53944948. [Google Scholar]
  231. Skaliter R., Makhov A.M., Griffith J.D., Lehman I.R. (1996). Rolling circle DNA replication by extracts of herpes simplex virus type 1-infected human cellsJ Virol 7011321136. [Google Scholar]
  232. Sloutskin A., Kinchington P.R., Goldstein R.S. (2013). Productive vs non-productive infection by cell-free varicella zoster virus of human neurons derived from embryonic stem cells is dependent upon infectious viral doseVirology 443285293.[CrossRef] [Google Scholar]
  233. Sloutskin A., Yee M.B., Kinchington P.R., Goldstein R.S. (2014). Varicella-zoster virus and herpes simplex virus 1 can infect and replicate in the same neurons whether co- or superinfectedJ Virol 8850795086.[CrossRef] [Google Scholar]
  234. Smith R.H., Caughman G.B., O'Callaghan D.J. (1992). Characterization of the regulatory functions of the equine herpesvirus 1 immediate-early gene productJ Virol 66936945. [Google Scholar]
  235. Spivack J.G., Woods G.M., Fraser N.W. (1991). Identification of a novel latency-specific splice donor signal within the herpes simplex virus type 1 2.0-kilobase latency-associated transcript (LAT): translation inhibition of LAT open reading frames by the intron within the 2.0-kilobase LATJ Virol 6568006810. [Google Scholar]
  236. St Leger A.J., Hendricks R.L. (2011). CD8+T cells patrol HSV-1-infected trigeminal ganglia and prevent viral reactivationJ Neurovirol 17528534.[CrossRef] [Google Scholar]
  237. Steiner I., Kennedy P.G. (1993). Molecular biology of herpes simplex virus type 1 latency in the nervous systemMol Neurobiol 7137159.[CrossRef] [Google Scholar]
  238. Steiner I., Spivack J.G., Deshmane S.L., Ace C.I., Preston C.M., Fraser N.W. (1990). A herpes simplex virus type 1 mutant containing a nontransinducing Vmw65 protein establishes latent infection in vivo in the absence of viral replication and reactivates efficiently from explanted trigeminal gangliaJ Virol 6416301638. [Google Scholar]
  239. Stevens J.G., Cook M.L. (1971). Latent herpes simplex virus in spinal ganglia of miceScience 173843845.[CrossRef] [Google Scholar]
  240. Stevens J.G., Nesburn A.B., Cook M.L. (1972). Latent herpes simplex virus from trigeminal ganglia of rabbits with recurrent eye infectionNat New Biol 235216217.[CrossRef] [Google Scholar]
  241. Stevens J.G., Haarr L., Porter D.D., Cook M.L., Wagner E.K. (1988). Prominence of the herpes simplex virus latency-associated transcript in trigeminal ganglia from seropositive humansJ Infect Dis 158117123.[CrossRef] [Google Scholar]
  242. Stingley S.W., Ramirez J.J., Aguilar S.A., Simmen K., Sandri-Goldin R.M., Ghazal P., Wagner E.K. (2000). Global analysis of herpes simplex virus type 1 transcription using an oligonucleotide-based DNA microarrayJ Virol 7499169927.[CrossRef] [Google Scholar]
  243. Stothard P. (2000). The Sequence Manipulation Suite: JavaScript programs for analyzing and formatting protein and DNA sequencesBiotechniques 2811021104. [Google Scholar]
  244. Suspène R., Aynaud M.M., Koch S., Pasdeloup D., Labetoulle M., Gaertner B., Vartanian J.P., Meyerhans A., Wain-Hobson S. (2011). Genetic editing of herpes simplex virus 1 and Epstein–Barr herpesvirus genomes by human APOBEC3 cytidine deaminases in culture and in vivo J Virol 8575947602.[CrossRef] [Google Scholar]
  245. Takahashi M.N., Jackson W., Laird D.T., Culp T.D., Grose C., Haynes J.I. II, Benetti L. (2009). Varicella-zoster virus infection induces autophagy in both cultured cells and human skin vesiclesJ Virol 8354665476.[CrossRef] [Google Scholar]
  246. Tal-Singer R., Lasner T.M., Podrzucki W., Skokotas A., Leary J.J., Berger S.L., Fraser N.W. (1997). Gene expression during reactivation of herpes simplex virus type 1 from latency in the peripheral nervous system is different from that during lytic infection of tissue culturesJ Virol 7152685276. [Google Scholar]
  247. Taslim C., Huang K., Huang T., Lin S. (2012). Analyzing ChIP-seq data: preprocessing, normalization, differential identification, and binding pattern characterizationMethods Mol Biol 802275291.[CrossRef] [Google Scholar]
  248. Tavalai N., Stamminger T. (2009). Interplay between herpesvirus infection and host defense by PML nuclear bodiesViruses 112401264.[CrossRef] [Google Scholar]
  249. Taylor K.E., Chew M.V., Ashkar A.A., Mossman K.L. (2014). Novel roles of cytoplasmic ICP0: proteasome-independent functions of the RING finger are required to block interferon-stimulated gene production but not to promote viral replicationJ Virol 8880918101.[CrossRef] [Google Scholar]
  250. Theil D., Derfuss T., Paripovic I., Herberger S., Meinl E., Schueler O., Strupp M., Arbusow V., Brandt T. (2003a). Latent herpesvirus infection in human trigeminal ganglia causes chronic immune responseAm J Pathol 16321792184.[CrossRef] [Google Scholar]
  251. Theil D., Paripovic I., Derfuss T., Herberger S., Strupp M., Arbusow V., Brandt T. (2003b). Dually infected (HSV-1/VZV) single neurons in human trigeminal gangliaAnn Neurol 54678682.[CrossRef] [Google Scholar]
  252. Thomas D.L., Lock M., Zabolotny J.M., Mohan B.R., Fraser N.W. (2002). The 2-kilobase intron of the herpes simplex virus type 1 latency-associated transcript has a half-life of approximately 24 hours in SY5Y and COS-1 cellsJ Virol 76532540.[CrossRef] [Google Scholar]
  253. Thompson R.L., Sawtell N.M. (2000). Replication of herpes simplex virus type 1 within trigeminal ganglia is required for high frequency but not high viral genome copy number latencyJ Virol 74965974.[CrossRef] [Google Scholar]
  254. Thompson R.L., Sawtell N.M. (2006). Evidence that the herpes simplex virus type 1 ICP0 protein does not initiate reactivation from latency in vivo J Virol 801091910930.[CrossRef] [Google Scholar]
  255. Thompson R.L., Preston C.M., Sawtell N.M. (2009). De novo synthesis of VP16 coordinates the exit from HSV latency in vivo PLoS Pathog 5e1000352.[CrossRef] [Google Scholar]
  256. Topp K.S., Meade L.B., LaVail J.H. (1994). Microtubule polarity in the peripheral processes of trigeminal ganglion cells: relevance for the retrograde transport of herpes simplex virusJ Neurosci 14318325. [Google Scholar]
  257. Tronstein E., Johnston C., Huang M.L., Selke S., Magaret A., Warren T., Corey L., Wald A. (2011). Genital shedding of herpes simplex virus among symptomatic and asymptomatic persons with HSV-2 infectionJAMA 30514411449.[CrossRef] [Google Scholar]
  258. Umbach J.L., Kramer M.F., Jurak I., Karnowski H.W., Coen D.M., Cullen B.R. (2008). MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAsNature 454780783. [Google Scholar]
  259. Umbach J.L., Nagel M.A., Cohrs R.J., Gilden D.H., Cullen B.R. (2009). Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal gangliaJ Virol 831067710683.[CrossRef] [Google Scholar]
  260. van Santen V.L. (1991). Characterization of the bovine herpesvirus 4 major immediate-early transcriptJ Virol 6552115224. [Google Scholar]
  261. van Velzen M., Jing L., Osterhaus A.D., Sette A., Koelle D.M., Verjans G.M. (2013). Local CD4 and CD8 T-cell reactivity to HSV-1 antigens documents broad viral protein expression and immune competence in latently infected human trigeminal gangliaPLoS Pathog 9e1003547.[CrossRef] [Google Scholar]
  262. Verjans G.M., Hintzen R.Q., van Dun J.M., Poot A., Milikan J.C., Laman J.D., Langerak A.W., Kinchington P.R., Osterhaus A.D. (2007). Selective retention of herpes simplex virus-specific T cells in latently infected human trigeminal gangliaProc Natl Acad Sci U S A 10434963501.[CrossRef] [Google Scholar]
  263. Verweij M.C., Lipińska A.D., Koppers-Lalic D., Quinten E., Funke J., van Leeuwen H.C., Bieńkowska-Szewczyk K., Koch J., Ressing M.E., Wiertz E.J.H.J. (2011). Structural and functional analysis of the TAP-inhibiting UL49.5 proteins of varicellovirusesMol Immunol 48203851.[CrossRef] [Google Scholar]
  264. Vrabec J.T., Alford R.L. (2004). Quantitative analysis of herpes simplex virus in cranial nerve gangliaJ Neurovirol 10216222.[CrossRef] [Google Scholar]
  265. Wada Y., Ohta Y., Xu M., Tsutsumi S., Minami T., Inoue K., Komura D., Kitakami J., Oshida N., other authors. (2009). A wave of nascent transcription on activated human genesProc Natl Acad Sci U S A 1061835718361.[CrossRef] [Google Scholar]
  266. Wagner L.M., DeLuca N.A. (2013). Temporal association of herpes simplex virus ICP4 with cellular complexes functioning at multiple steps in PolII transcriptionPLoS One 8e78242.[CrossRef] [Google Scholar]
  267. Wagner E.K., Petroski M.D., Pande N.T., Lieu P.T., Rice M. (1998). Analysis of factors influencing kinetics of herpes simplex virus transcription utilizing recombinant virusMethods 16105116.[CrossRef] [Google Scholar]
  268. Walters M.S., Kinchington P.R., Banfield B.W., Silverstein S. (2010). Hyperphosphorylation of histone deacetylase 2 by alphaherpesvirus US3 kinasesJ Virol 8496669676.[CrossRef] [Google Scholar]
  269. Wang Q.Y., Zhou C., Johnson K.E., Colgrove R.C., Coen D.M., Knipe D.M. (2005). Herpesviral latency-associated transcript gene promotes assembly of heterochromatin on viral lytic-gene promoters in latent infectionProc Natl Acad Sci U S A 1021605516059.[CrossRef] [Google Scholar]
  270. Wang C.C., Yepes L.C., Danaher R.J., Berger J.R., Mootoor Y., Kryscio R.J., Miller C.S. (2010). Low prevalence of varicella zoster virus and herpes simplex virus type 2 in saliva from human immunodeficiency virus-infected persons in the era of highly active antiretroviral therapyOral Surg Oral Med Oral Pathol Oral Radiol Endod 109232237.[CrossRef] [Google Scholar]
  271. Webre J.M., Hill J.M., Nolan N.M., Clement C., McFerrin H.E., Bhattacharjee P.S., Hsia V., Neumann D.M., Foster T.P., other authors. (2012). Rabbit and mouse models of HSV-1 latency, reactivation, and recurrent eye diseasesJ Biomed Biotechnol 2012612316.[CrossRef] [Google Scholar]
  272. White T.M., Gilden D.H., Mahalingam R. (2001). An animal model of varicella virus infectionBrain Pathol 11475479.[CrossRef] [Google Scholar]
  273. Whitley R.J., Gnann J.W. (2002). Viral encephalitis: familiar infections and emerging pathogensLancet 359507513.[CrossRef] [Google Scholar]
  274. Wilcox C.L., Johnson E.M. Jr (1987). Nerve growth factor deprivation results in the reactivation of latent herpes simplex virus in vitro J Virol 6123112315. [Google Scholar]
  275. Wilcox C.L., Johnson E.M. Jr (1988). Characterization of nerve growth factor-dependent herpes simplex virus latency in neurons in vitro J Virol 62393399. [Google Scholar]
  276. Wilcox C.L., Smith R.L., Freed C.R., Johnson E.M. Jr (1990). Nerve growth factor-dependence of herpes simplex virus latency in peripheral sympathetic and sensory neurons in vitro J Neurosci 1012681275. [Google Scholar]
  277. Wilson A.C., Mohr I. (2012). A cultured affair: HSV latency and reactivation in neuronsTrends Microbiol 20604611.[CrossRef] [Google Scholar]
  278. Workman A., Eudy J., Smith L., da Silva L.F., Sinani D., Bricker H., Cook E., Doster A., Jones C. (2012). Cellular transcription factors induced in trigeminal ganglia during dexamethasone-induced reactivation from latency stimulate bovine herpesvirus 1 productive infection and certain viral promotersJ Virol 8624592473.[CrossRef] [Google Scholar]
  279. Wroblewska Z., Valyi-Nagy T., Otte J., Dillner A., Jackson A., Sole D.P., Fraser N.W. (1993). A mouse model for varicella-zoster virus latencyMicrob Pathog 15141151.[CrossRef] [Google Scholar]
  280. Wu T.T., Su Y.H., Block T.M., Taylor J.M. (1996). Evidence that two latency-associated transcripts of herpes simplex virus type 1 are nonlinearJ Virol 7059625967. [Google Scholar]
  281. Wu W., Guo Z., Zhang X., Guo L., Liu L., Liao Y., Wang J., Wang L., Li Q. (2013). A microRNA encoded by HSV-1 inhibits a cellular transcriptional repressor of viral immediate early and early genesSci China Life Sci 56373383.[CrossRef] [Google Scholar]
  282. Yang L., Voytek C.C., Margolis T.P. (2000). Immunohistochemical analysis of primary sensory neurons latently infected with herpes simplex virus type 1J Virol 74209217.[CrossRef] [Google Scholar]
  283. Yao F., Courtney R.J. (1992). Association of ICP0 but not ICP27 with purified virions of herpes simplex virus type 1J Virol 6627092716. [Google Scholar]
  284. Yu X., Seitz S., Pointon T., Bowlin J.L., Cohrs R.J., Jonjić S., Haas J., Wellish M., Gilden D. (2013). Varicella zoster virus infection of highly pure terminally differentiated human neuronsJ Neurovirol 197581.[CrossRef] [Google Scholar]
  285. Zabierowski S.E., DeLuca N.A. (2008). Stabilized binding of TBP to the TATA box of herpes simplex virus type 1 early (tk) and late (gC) promoters by TFIIA and ICP4J Virol 8235463554.[CrossRef] [Google Scholar]
  286. Zerboni L., Ku C.C., Jones C.D., Zehnder J.L., Arvin A.M. (2005). Varicella-zoster virus infection of human dorsal root ganglia in vivo Proc Natl Acad Sci U S A 10264906495.[CrossRef] [Google Scholar]
  287. Zerboni L., Sobel R.A., Ramachandran V., Rajamani J., Ruyechan W., Abendroth A., Arvin A. (2010). Expression of varicella-zoster virus immediate-early regulatory protein IE63 in neurons of latently infected human sensory gangliaJ Virol 8434213430.[CrossRef] [Google Scholar]
  288. Zerboni L., Sobel R.A., Lai M., Triglia R., Steain M., Abendroth A., Arvin A. (2012). Apparent expression of varicella-zoster virus proteins in latency resulting from reactivity of murine and rabbit antibodies with human blood group A determinants in sensory neuronsJ Virol 86578583.[CrossRef] [Google Scholar]
  289. Zhang Z., Huang Y., Zhu H. (2008). A highly efficient protocol of generating and analyzing VZV ORF deletion mutants based on a newly developed luciferase VZV BAC systemJ Virol Methods 148197204.[CrossRef] [Google Scholar]
  290. Zhou G., Du T., Roizman B. (2013). The role of the CoREST/REST repressor complex in herpes simplex virus 1 productive infection and in latencyViruses 512081218.[CrossRef] [Google Scholar]
  291. Zhu Q., Courtney R.J. (1994). Chemical cross-linking of virion envelope and tegument proteins of herpes simplex virus type 1Virology 204590599.[CrossRef] [Google Scholar]
  292. Zwaagstra J.C., Ghiasi H., Slanina S.M., Nesburn A.B., Wheatley S.C., Lillycrop K., Wood J., Latchman D.S., Patel K., Wechsler S.L. (1990). Activity of herpes simplex virus type 1 latency-associated transcript (LAT) promoter in neuron-derived cells: evidence for neuron specificity and for a large LAT transcriptJ Virol 6450195028. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000128
Loading
/content/journal/jgv/10.1099/vir.0.000128
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error